
LevelScheme
M. A. Caprio, Department of Physics, University of Notre Dame

Version 3.30 (July 18, 2007)

I. Introduction

LevelScheme: A scientific figure preparation system
Installation
Preliminary comments
Creating a figure
General drawing principles
Setting default values for options
Notes for users of LevelScheme 3.2

II. Basic drawing objects

Levels, extensions, and connectors
Arrows and transition arrows
General drawing shapes
Labels

III. Including Mathematica plots and other graphics

Two-dimensional graphics
Three-dimensional graphics

IV. Figure construction

Coordinate systems
Panels and multipanel plots
Axes
Further description of the Figure command
Parallel versions of the same figure (conditional inclusion)
Layers
Custom tick marks
Text formatting

V. Producing Encapsulated PostScript (EPS) output

Appendices

Appendix A: Transition autospacing for decay schemes
Appendix B: Notes for advanced users
Appendix C: Known problems under specific Mathematica versions

Version 3.30

I. Introduction

LevelScheme: A scientific figure preparation system

LevelScheme is a scientific figure preparation system for Mathematica. Level-
Scheme provides a general infrastructure for the preparation of publication-quality fig-
ures, combining technical drawings or diagrams, mathematical plots, data plots, and
annotations. It features extensive support for multipanel and inset plotting, customiz-
able tick mark generation, diagram construction, and labeling.

LevelScheme originated as a tool for drawing level schemes, or level energy
diagrams, as used in nuclear, atomic, molecular, and hadronic physics. LevelScheme
includes a full suite of drawing tools for the construction of such diagrams. Level-
Scheme automates many of the tedious aspects of preparing a level scheme, such as
positioning transition arrows between levels or placing text labels alongside the objects
they label. LevelScheme allows extensive manual fine tuning of the drawing appear-
ance, text formatting, and object positioning. It also includes specialized features for
creating several common types of level schemes encountered in nuclear physics. The
full power of Mathematica's programming language may be used in constructing the
figure contents, so, for instance, level energies and transition properties shown in the
diagram can be directly computed from models or input from data files.

Mathematica versions: This version of LevelScheme is for use with Mathematica ver-
sions 3 through 5. A new version of LevelScheme compatible with Mathematica 6 will
be available shortly from the LevelScheme home page:

http://wnsl.physics.yale.edu/levelscheme

LevelScheme user's guide 2

Version 3.30

Installation

The LevelScheme package distribution contains several Mathematica package
files (LevelScheme.m, BlockOptions.m, BlockUnprotect.m, ClipTo-
Rectangle.m, CustomTicks.m, ForEach.m, InheritOptions.m, and
MCText.m, and NamedColorPalette.m). The distribution also includes various
documentation files: a preprint of the Computer Physics Communications paper describ-
ing LevelScheme (physics_0505065v2.pdf), two user guide files (Level-
SchemeGuide.pdf and CustomTicksGuide.pdf), and a Mathematica notebook
containing example figures with the code used to generate them (LevelScheme-
Examples.nb). Annotated source code (LevelSchemeSource.nb) is provided
for the benefit of programmers.

To install the LevelScheme package, first decide in what directory on your com-
puter you would like to permanently keep the package files. Move the files to that direc-
tory. (If you are reading this user guide on-screen right now, please close this file
before trying to move it...)

Each time you start Mathematica, you must load the package, with the following
commands. In the AppendTo command below, replace the directory name
"c:\\example" with the actual name of the directory in which the files are located.

AppendTo@$Path, "c:\\example"D;
Get@"LevelScheme`"D;

LevelScheme scientific figure preparation system
M. A. Caprio, Department of Physics, University of Notre Dame
Comput. Phys. Commun. 171 , 107 H2005L
Version 3.30 HJuly 18, 2007L

View color palette Visit home page

You should always load the package before you first use any of the
LevelScheme commands. If you ever accidentally try to use any of the LevelScheme
commands before loading the package, the package will not be able to run properly for
the rest of your Mathematica session (an inconvenience common to all Mathematica
packages). If this happens, exit and restart Mathematica (or quit the kernel), and try
again.

LevelScheme user's guide 3

Version 3.30

Preliminary comments

A few basic principles have guided the design of the LevelScheme package.
One is to have a system whereby even major formatting changes to a figure can be made
relatively quickly. Objects in a level scheme are attached to each other (transitions
attached to levels, labels attached to levels and to transitions, etc.), so that if one object
is moved the rest follow automatically. Another principle is for objects to have
reasonable default properties, so that an unsophisticated level scheme can be drawn with
minimal attention to formatting features. But the user must then have near-complete
flexibility in fine tuning formatting details to accomodate whatever special cases might
arise. This is accomplished by making the more sophisticated formatting features
accessible through various optional arguments ("options") for which the user can
specify values. The user can specify the values of options for individual objects, or the
user can set new default values of options for the whole figure to control the formatting
of many objects at once. Finally, attention has been paid to providing a uniform user
interface for all drawing objects, based upon a consistent notation for the specification
of properties for the outline, fill, and text labels of objects.

It is assumed that the reader of this guide has some basic experience starting
Mathematica, evaluating cells, and opening and saving notebook files. The reader
would also benefit from having used the Mathematica Plot command to generate some
basic graphics (see The Mathematica Book Section 1.9.1). Note that the Mathematica
option symbol ("→") which appears throughout this guide is entered from the keyboard
as a hyphen followed by a greater-than sign ("->").

As a matter of notation, many dimensions (such as line thicknesses or text
position adjustments) will be specified in "printer's points", where 1 pt = 1/72 inch º
0.35 mm. These are convenient and customary units to use for controlling text and
graphics. A thin line is about 1 pt thick, and characters of normal text are ~10 pt high.

The LevelScheme package has been published in Computer Physics Communica-
tions [M. A. Caprio, Comput. Phys. Commun. 171, 107 (2005), also available as the
preprint arXiv:physics/0505065]. References to the software should mention
the Computer Physics Communications article. Updates to LevelScheme, and further
documentation, may be obtained through the LevelScheme home page:

http://wnsl.physics.yale.edu/levelscheme

LevelScheme user's guide 4

Version 3.30

Creating a figure

A figure is drawn by giving a list of "objects" (such as energy levels, arrows,
shapes, text labels, or data plots), as the argument to the command Figure. The actual
syntax for specifying these objects is the subject of most of the rest of this guide.

Figure@8 object1, object2, … <D Constructs and displays a figure

The basic figure display command.

The positions of objects in the figure are specified in terms of an x-y coordinate
system. For a level scheme, the meaning of the x coordinate is usually somewhat
arbitrary (it is just used to control left-right positioning), while the y coordinate usually
represents energy. The Figure command must be told the horizontal and vertical
range of coordinate space to be displayed, using an option PlotRange→
{{xmin,xmax},{ymin,ymax}}. The desired size of the drawing on the page, in
printer's points, can be specfied with the ImageSize option.

An example of a simple figure follows.
Figure[
 {
 SetOptions[Lev,Thickness→3,Color→Red],
 SetOptions[Trans,ArrowType→ShapeArrow,FillColor→LightGray],
 Lev[lev1,0,2,0],
 Lev[lev2,1,2,100],
 Lev[lev3,0,2,200],
 Trans[lev2,0.5,lev1,0.9,Width→10],
 Trans[lev3,0.5,lev1,0.5,Width→20]
 },
 PlotRange→{{0,2},{-10,210}}, ImageSize→72*{3,3}
];

LevelScheme user's guide 5

Version 3.30

Basic illustration of the Figure command.

The Figure command accepts many additional options controlling the
appearance of the drawing. Most of these are identical to options accepted by the usual
Mathematica plotting and display functions such as Plot and Show. A complete
summary will be given in a later section. Here we just illustrate how a "frame" can be
drawn about the figure using some of these options.

Frame→True,FrameTicks→{None,Automatic},LabL→"Energy",FontSize→15

0

50

100

150

200

ygrenE

The same figure as above but with a frame.

LevelScheme user's guide 6

Version 3.30

General drawing principles

Each "object" in the figure is built from up to three distinct parts: an outline, a
filled area, and attached text labels, as illustrated in the following color-coded diagram.
Not all objects have all these parts; for instance, a level has no filled area.

ABC
ABC

0+ ABC
Outline

Fill
Text

Decomposition of each object into outline, fill, and text.

The appearance of an object is controlled by setting options for these parts. A
couple of options affect the entire object, while the others affect only the outline, fill, or
text. Following is a summary of all the drawing options.

option name default value

Color Black Default color used for all parts of object,
unless overridden by LineColor ,
FillColor , or FontColor

Show True Whether or not to draw the object

Options affecting appearance of all parts of an object.

LevelScheme user's guide 7

Version 3.30

option name default value

ShowLine True Whether or not to draw the outline

LineColor Automatic Color for outline ; if Automatic ,
value specified by Color is used instead

Thickness 1 Thickness of line in printer ' s points

Dashing None Line dashing style; may be None for no dashing,
Automatic for default dash lengths,
a numerical length length in printer' s points,
a series of dash lengths 8length1, length2, …< ,
or a Mathematica AbsoluteDashing directive

Options affecting appearance of just the outline.

option name default value

ShowFill True Whether or not to draw the fill

FillColor Automatic Color for fill ; if Automatic ,
value specified by Color is used instead

Options affecting appearance of just the fill.

option name default value

FontFamily Times New Roman Font family, which may be any font installed on the system

FontSize 12 Character height in printer ' s points

FontColor Automatic Color for text ; if Automatic ,
value specified by Color is used instead

FontWeight Plain Font weight; Bold gives boldface

FontSlant Plain Font slant; Italic gives italic

FontTracking Plain Horizontal spacing between letters

BackgroundFontSiz
eFactor

1.0 Controls extent of optional whited-out background
region when Background X option is set Hsee belowL

Options affecting font characteristics for text.

option name default value

Layer Automatic Controls whether object is drawn in front of
or behind others Hsee discussion in later sectionL

ClipToRectangle True Controls clipping of graphics to the current
plotting region Hsee discussion in later sectionL

Advanced drawing control options.

The color of the entire object (outline, fill, and text) can be set all at once with
the option Color. Or the color can be controlled independently for the individual
components by setting the LineColor, FillColor, or FontColor options.

LevelScheme user's guide 8

Version 3.30

Colors are specified using either the color names from the Mathematica Colors package
or any of the Mathematica color directives (see the Mathematica documentation for
GrayLevel or RGBColor). When LevelScheme is loaded, it displays a button
labeled "View color palette" in the notebook. You can view a chart of the named colors
at any time by clicking on this button.

The line thickness and dashing are controlled by the options Thickness and
Dashing. To turn on dashing with default dash lengths, simply set Dashing→
Automatic. Otherwise, specify dash lengths as described in the table above. For
instance, Dashing→{6,2} produces a dash-dot pattern. For more advanced
comments on fine-tuning the appearance of dashing, see Appendix B.

It is possible to specify that the outline or fill of the object not actually be drawn.
For instance, hiding the fill with ShowFill→False makes the object transparent so
objects behind can show through. This is not the same as simply making the fill the
same color as the background, since then it would still block any objects behind it from
view.

The font style options are the standard options for text formatting in
Mathematica, discussed in more detail in the Mathematica documentation. The default
font used by the LevelScheme package is Times, but usually any font installed on the
system can be used.

The advanced options Layer and ClipToRectangle are discussed in later
sections.

LevelScheme user's guide 9

Version 3.30

option name default value

Lab X None Contents of label X

ShowLab X True Whether or not to draw label X

Orientation X Automatic Orientation of label X ; may be set to
Horizontal , Vertical , Automatic
to align text along object Hwhich is the same as
Horizontal except for labels on arrows or axesL,
Inverted to obtain text 180 ° rotated from
Automatic , or an arbitrary angle Hsee discussionL

Offset X Automatic Position of label X
with respect to its anchor point Hsee discussionL;
specified as 8 xoffset, yoffset < ; Automatic
yields a reasonable default position

Nudge X 0 Horizontal and vertical fine-tuning adjustment of label
position; specified in printer' s points as ynudge
for just a vertical adjustment or as 8 xnudge, ynudge<

Background X None Specifies existence and color of
whited-out area behind label; Automatic
uses the background color of the drawing

Options for individual labels. Substitute the appropriate label position letter for X.

A single object can have one or more labels attached, depending upon the type
of object. Each of these has a "name" indicating its position: "L" on the left, "R" on the
right, "T" at the top (or tail, in the case of an arrow), "B" at the bottom, or "C" in the
center. The contents of these label are set using the options LabL, LabR, etc., according
to this naming scheme. The label names are illustrated for a few types of object in the
following diagram. There are several options which control the contents and
positioning for each label individually.

LabL LabRLabC

LabT

LabB

LbaL

RbaL
CbaL

TbaLLabL
LabC

LabR

Names of labels, indicating their positions.

LevelScheme user's guide 10

Version 3.30

The most important of these options is OffsetX, which controls where the
label actually lies relative to its nominal position. For instance, the "right-hand" label
for a level, which is nominally positioned at the right-most point of the level line,
actually is typically drawn either above the right end of the level, outside the right end
of the level, or below the right end of the level. The right endpoint of the level serves as
an "anchor" point (the red dot in the following diagram) for the label. Then the option
OffsetR→{xoff, yoff } specifies where this "anchor" point lies within an imaginary
box circumscribing the text, with {-1,-1} as the lower left corner of the text and {+1,+1}
as the upper right corner. This is based upon the "offset" notation used in the basic
Mathematica Text command. The following illustrates where the text lies for some
example offsets.

@+1,+1D

@-1,0D

@+1,-1D

The anchor point offset relative to a text label.

The position of the text can further be fine-tuned with the NudgeX option, which
nudges the label horizontally and vertically by the specified number of printer's points.

The orientation can be set to any arbitrary angle with the OrientationX
option. The angle is measured counterclockwise from horizontal in radians; to specify it
in degrees, as is usually more convenient, multiply by the conversion factor Degree,
e.g., 45*Degree. Preset orientations, including Horizontal and Vertical (see
option description above), are also available.

The option BackgroundX is used to create a whited-out area behind the label,
hiding anything else in the drawing behind the label.

LevelScheme user's guide 11

Version 3.30

Setting default values for options

Sometimes an option's value only needs to be set for a single object. But very
often it is desirable to to change the default value of an option for all objects of a given
type in the entire figure. This is accomplished using the Mathematica SetOptions
command, which takes the form SetOptions[objecttype,option→value,…], where
objecttype is one of the types of drawing object used in the figure. Some examples
would be

SetOptions[Lev,Thickness→3,Color→Red,FontSize→20]
SetOptions[Trans,Thickness→2,Dashing→Automatic]

For several options which control the basic drawing style, described at the beginning of
preceding section, you can also specify a global default value. This allows you to make
a uniform style change to your whole drawing. To set the global defaults, specify the
options for SchemeObject. For example,

SetOptions[SchemeObject,Thickness→2,FontFamily->"Helvetica",FontSize→15]

These global default values are used by all types of objects, unless overridden by a Set-
Options for that particular type of object.

If you use the SetOptions command outside a Figure definition, the new
values for the options will apply to all figures for the rest of the Mathematica session;
whereas, if you use the SetOptions command inside a Figure definition, the new
values apply only to that one figure. It is usually preferable to adopt a practice of setting
option values inside each individual figure, to avoid unwanted collateral effects on other
figures.

SetOptions affects only those objects defined following it in the figure, so you
can change style midway through a figure. The default value of an option set with Set-
Options can always be overridden if needed for individual objects. The following
provides an example of the use of SetOptions several times within one figure, in this
case to choose a different color for the labels on each band of levels, and an example of
overriding the default options for a single object, here the level with the black label.

SetOptions[Lev,LabR→"ABC",FontSize→20],

SetOptions[Lev,FontColor→Red],
Lev[Dummy,0,1,0],Lev[Dummy,0,1,50],Lev[Dummy,0,1,100],Lev[Dummy,0,1,150],

SetOptions[Lev,FontColor→Green],
Lev[Dummy,1,2,0],Lev[Dummy,1,2,50,FontColor→

LevelScheme user's guide 12

Version 3.30

Black],Lev[Dummy,1,2,100],Lev[Dummy,1,2,150],

SetOptions[Lev,FontColor→Blue],
Lev[Dummy,2,3,0],Lev[Dummy,2,3,50],Lev[Dummy,2,3,100],Lev[Dummy,2,3,150]

ABC
ABC
ABC
ABC

ABC
ABC
ABC
ABC

ABC
ABC
ABC
ABC

Illustration of the use of SetOptions several times within one figure.

Notes for users of LevelScheme 3.2

Some of the new capabilities of LevelScheme 3.3 include: incorporation of 3-di-
mensional graphics into 2-dimensional figures, new annotation and typesetting tools
(brackets and diagonal fractions), arrows with arbitrarily many segments, and much
more control over multipanel figure layout (including panel-by-panel specification of
options such as plot ranges and frame labels).

LevelScheme 3.3 is almost completely backward-compatible with version 3.2,
i.e., figure code written for the previous version will produce the same results under the
present version, with a few exceptions. Most notably, the options used to specify line
dashings have been modified to provide more flexibility. For instance, now it is possi-
ble to produce arbitrary dash-dot patterns). In the process the option Dash has been
eliminated. LevelScheme will display a reminder message if you attempt to use the
option Dash. Simple figures in which dashing was turned on with DashØTrue, with-
out any further customization of dash lengths, can be adapted by specifying DashingØ
Automatic. Also, since arrows with multiple segments are now supported, the
options AboveKinkL, AboveKinkR, and AboveKinkC have been replaced with
SegmentL, SegmentR, and SegmentC, to allow for the placement of text labels on
any of these segments.

The command for generating a figure has been renamed from Scheme to Fig-
ure in the present version of LevelScheme, to reflect the fact that LevelScheme is used
to produce a much wider variety of figure types than simply level schemes. However,
the old command name Scheme is still recognized as an alias for Figure, for the
convenience of existing users.

LevelScheme user's guide 13

Version 3.30

II. Basic drawing objects

Levels, extensions, and connectors

Levels are drawn with the command Lev. There are also auxiliary commands
for drawing extension lines and connectors, discussed later in this section.

Lev@ name, x1, x2, energyD Energy level

Level drawing command.

option name default value

Margin 0.1 Horizontal inset of each end of the level from the left and
right coordinates specified, in abscissa coordinate units

WingHeight 0 Elevation of gull wings relative to central segment of level,
in printer ' s points

WingRiseWidth 10 Width of sloped segment of gull wings,
in printer ' s points; can be specified as 8lwidth,
rwidth< for asymmetric left and right wings

WingTipWidth 30 Width of flat segment of gull wings,
in printer ' s points; can be specified as 8lwidth,
rwidth< for asymmetric left and right wings

MakeWingL True Whether or not to make gull wing on left side

MakeWingR True Whether or not to make gull wing on right side

Options for level drawing command.

Each specification of a level with Lev includes a name (or ID), left and right
coordinate, and energy coordinate. The name can be any symbol of the user's choosing.
The name does not affect the drawing of the level itself. Rather, it is used later to refer
back to the level, when drawing extension lines, transitions, etc., which connect to the
level. The actual left and right end points of the level are indented from the nominal left
and right end coordinates specified, by an amount controlled by the option Margin.
This allows end points to be specified in round numbers, e.g., levels can be specified as
extending from 1 to 2 and from 2 to 3, while the margin ensures that the ends of the
levels do not actually bump into each other.

LevelScheme user's guide 14

Version 3.30

0 1 2

nigra
M

nigra
M

nigra
M

nigra
M

The left and right end points of a level are indented by an adjustable margin.

Levels can have left, center, and right labels. Specifying the special option
value LabX→Automatic causes the level energy to be used as the text of that label.
Thus, energy labels can be created on all levels simply by invoking
SetOptions[Lev,LabX→Automatic] and can later be removed as easily. When
Mathematica displays real numbers, it removes all trailing zeros after the decimal point,
regardless of how the number was originally entered. Thus, for instance, a level energy
entered as 0.00 would be truncated to 0. in the energy label, which is undesirable. To
circumvent this, give the energy argument to Lev as a string, surrounded by quotation
marks. Lev will extract the numerical value for use as the vertical coordinate of the
level but will use the string verbatim in automatic energy labels.

In level schemes with closely-spaced levels, it is sometimes necessary to raise or
lower the end segments of levels to make room for text labels, giving levels which
appear to have "gull wings". These can be created by specifying a nonzero value for the
option WingHeight, postive for elevated wings and negative for lowered wings.
Automatic energy labels and gull wings are both illustrated in the following example.
The dimensions of the gull wings can be customized using the options
WingRiseWidth, WingTipWidth, MakeWingL, and MakeWingR.

SetOptions[Lev,Thickness→3,LabR→Automatic],
Lev[lev0,0,1,"0.0"],
Lev[lev100,0,1,"100.1",WingHeight→-5],
Lev[lev105,0,1,"105.3",WingHeight→+5]

LevelScheme user's guide 15

Version 3.30

0.0

100.1
105.3

Illustration of automatic energy labels and gull wings.

ExtensionLine@
level, side, lengthD

Extension line to left or right of level; side may be Left or Right

ExtensionLine@
level, posn1, posn2D

Extension line with arbitrary starting and
ending positions relative to left end coordinate of level

Connector@ level1, level2D Connector line from right end of level1 to left end of level2

Level extension line and connector drawing commands.

option name default value

ToWing True Controls whether an extension line appears
at the same vertical coordinate as the gull wing
Hif presentL or as the main part of the level

Option for extension line command.

Extension lines are attached to an existing level using the command Exten-
sionLine. They extend the level by a specified horizontal length to the left or right.

SetOptions[Lev,Thickness→3,LabR→Automatic,FontSize→15],
SetOptions[ExtensionLine,Thickness→1,Dashing->Automatic],
Lev[lev0,0,1,"0.0"],
ExtensionLine[lev0,Right,0.5,Dashing→Automatic]

0.0
Creation of an extension line.

Connector lines between levels are drawn with the command Connector. A
simple example follows.

SetOptions[Connector,Dash→True,Color->Red],
Connector[lev0,lev100]

LevelScheme user's guide 16

Version 3.30

0

100

Creation of a connector line.

Arrows and transition arrows

Arrows are drawn either with the command SchemeArrow or Trans.
SchemeArrow is meant for general-purpose use, e.g., to draw arrows in technical
diagrams or to annotate a figure. Trans is meant for drawing transition arrows in level
schemes.

SchemeArrow@ point1, point2D Arrow from point1 to point2

SchemeArrow@8
point1, …, pointn <D

Polygonal arrow with several segments, connecting the points indicated

Basic arrow drawing command.

LevelScheme user's guide 17

Version 3.30

option name default value

ArrowType LineArrow Arrow shape type; value can be
LineArrow , MultilineArrow ,
ShapeArrow , or SquiggleArrow

HeadLength 9 Length of arrowhead, in printer' s points

HeadLip 3 Half-width or extension of arrowhead
outward from arrow shaft, in printer' s points

Width 5 Width of arrow shaft,
in printer ' s points Hfor MultilineArrow ,
ShapeArrow , or SquiggleArrow onlyL

ShaftLines 2 Number of parallel lines in shaft Hfor
MultilineArrow onlyL

ShowTail False Controls whether or not an arrowhead appears at the tail of
the arrow Hfor LineArrow or SquiggleArrow onlyL

ShowHead True Controls whether or not an
arrowhead appears at the head of the arrow Hfor
LineArrow or SquiggleArrow onlyL

TailBevel False For a non-vertical arrow, controls whether or not the
tail of the arrow is sliced off to make it horizontal Hfor
MultilineArrow or ShapeArrow onlyL

Options controlling the arrow shape.

Arrows can be drawn in four different styles, selected by the option
ArrowType. An arrow of type LineArrow has an arrowhead constructed from two
line segments, the lengths and angles of which are customizable. An arrow of type
MultilineArrow is similar but has two or more lines in its shaft. The area between
the lines can be shaded as well. Note that the default color for the fill is the same as for
the line, which would leave the lines indistinguishable from the fill, defeating the point
of having multiple lines. Thus, in practice, MultilineArrow is almost always used
with either a separate FillColor option or with ShowFill→False. An arrow of
type ShapeArrow is drawn as a polygon with both an outline and fill. An arrow of
type SquiggleArrow has a sinusoidal squiggle for its shaft. These styles and the
options controlling the arrow dimension parameters for each are illustrated in the
following.

LevelScheme user's guide 18

Version 3.30

LineArrow MultilineArrow ShapeArrow SquiggleArrow

htgneLdae
H

piLdae
H

htgneLdae
H

htdi
W

piLdae
H

htgneLdae
H

htdi
W

piLdae
H

htgneLdae
H

htdi
WpiLdae

H

The three available arrow styles and their dimension parameters.

Some of the possible variations are shown below. A LineArrow can have
multiple segments, specified by giving a list of points
SchemeArrow[{point1,…,pointn}]. A LineArrow or SquiggleArrow can be
"double headed" or even have an arrowhead only on its tail, as controlled by the
ShowHead and ShowTail options. The number of tail shafts for a
MultilineArrow can be controlled with the ShaftLines option. The tail of a
MultilineArrow or ShapeArrow can be "beveled" so that it is horizontal, by
setting TailBevel→True (this is more commonly used with transition arrows,
described below). These possibilities are illustrated in the following.

Bent arrow Double-headed
arrow

Multiple
shafts

Beveled... or not

Variant arrow shapes.

LevelScheme user's guide 19

Version 3.30

option name default value

Posn X Automatic Position of label X along arrow shaft; value is specified as
fraction of distance from tail to head, or as distance
FromTail@ distD , FromHead@ distD ,
FromTailVertical@ distD , FromHeadVertical@
distD , FromTailHorizontal@ distD ,
or FromHeadHorizontal@ distD
in printer ' s points Hfor left, center, and right labels onlyL

Buffer X Automatic Buffer spacing between label X and arrow shaft, as
multiple of current font height Hfor left and right labels onlyL

Segment X Automatic For an arrow with multiple segments,
specifies which segment label X
is attached to Hfor left, center, and right labels onlyL;
may be positive integer 1 through n
where n is the number of segments,
to specify segment counting from tail,
or negative integer to count back from head

Options controlling label placement for transition arrows. These complement the usual LevelScheme label positioning options.

Arrows can have left, center, right, and tail labels. (The nominal "left" and
"right" labels are only actually properly named if the arrow is pointing downward, as
usual in level schemes.) If the OrientationX option for a label is specified as
Automatic (the default), the label will be aligned flush along the arrow shaft, giving a
very neat appearance. If a label "upside down" relative to this angling is prefered, as
occasionally might be for near-vertical arrows, the option can be overriden with the
value Inverted. Ordinary horizontal or vertical labels can be specified, as usual, with
the Horizontal and Vertical option values.

de
tr

ev
nI

cit
a

mo
tu

A

Horizontal

citamotuA

lacitre
V

Comparison of angles for arrow labels.

LevelScheme user's guide 20

Version 3.30

The position of each label along the arrow shaft is controlled with the option
PosnX . If a simple numerical value is given for the option, this specifies the position
as a fraction of the distance from the tail to the head. The tail label is by default at a
position of 0, and the other labels are by default at 0.5, the midpoint of the arrow. More
sophisticated positioning specifications, in terms of distances in printer's points from the
tail or head, are available as well. These are summarized in the option table above. For
instance, when several different transition arrows originate from the same level, it may
be desirable to have their labels all aligned at the same height as each other. If these
transition arrows are of different lengths and have different orientations, it would not be
easy to specify this alignment simply in terms of the fractional position along the arrow
shaft. Instead, the option value PosnXØFromTailVertical[dist] can be used.
The labels are then positioned the specified distance vertically down from the tail,
regardless of how far horizontally and thus how for along the shaft this means they must
go.

Developing a consistent system for setting the exact label positions, and for
providing reasonable default positions, proved to be challenging, since the arrows can
have arbitrary orientation and the labels themselves can have various orientations. For
vertical arrows with purely horizontal or vertical labels, the usual OffsetX system
works well, since, e.g., the arrow shaft should in this case always be at the far left end of
the right-hand label or at the center bottom of the tail label. But the offset system fails
miserably for angled arrows with angled text. Instead, it is much easier to note that, for
text aligned along the arrow, the center of the text should always be a distance of about
half a character height perpendicularly outward from the nearest side of the arrow shaft.
The OffsetX option for the left and labels has consequently been supplemented with a
BufferX option which controls the perpendicular distance out to the label's anchor
point as a multiple of half the current font height, as determined by FontSize. If
OffsetX and BufferX are set to Automatic, the actual values are chosen
"intelligently" based upon the label orientation. This hybrid system of positioning is in
practice not very complicated to use, since the default values usually produce decent
results, and adjustments can be carried out with a little experimentation.

For arrows with more than one segment, the left, center, and right labels may
appear on any of the segments, as specified by the option SegmentX. Segments are
numbered 1, 2, … starting from the tail of the arrow (or, alternatively, -1, -2, …
backwards from the head of the arrow), as illustrated below.

LevelScheme user's guide 21

Version 3.30

1

2
3

-1

-2

-3

Trans@ level1,
posn1, level2, posn2D

Transition arrow from level1 to level2 ,
with horizontal starting and ending positions explicitly specified

Trans@ level1, level2D Transition arrow from level1 to level2 , abbreviated form

Transition arrow drawing command. Points may also be specified explicitly, as for SchemeArrow.

Transition arrows in level schemes are drawn using Trans. Rather than start-
ing and ending points, starting and ending levels must be specified.

The arrow drawn by Trans is identical to the arrow drawn by SchemeArrow,
except that it uses the option values defined for Trans. This is useful if some arrows in
a level scheme represent transitions while others are annotations, since it allows the
stylistic options for one type to be set without interfering with those for the other type.
The default options for Trans are initially the same as for SchemeArrow, except that
TailBevel is by default turned on.

option name default value

EndPositions 80.5, 0.5< Arrow endpoint horizontal positions used
by abbreviated form Trans@ level1, level2D

FromWing False Controls whether tail of arrow is at
height of gull wing or main part of initial level

ToWing False Controls whether head of arrow is at
height of gull wing or main part of final level

Options controlling the positions of transition arrow endpoints.

The command Trans[level1,posn1,level2,posn2] draws a transition arrow
starting a horizontal distance posn1 from the left end of level1 and ending a horizontal
distance posn2 from the left end of level2. The distance is calculated from the nominal
left end of the level, ignoring the margins, rather than from the visible end point. This
simplifies the mental arithmetic required for positioning. For instance, an arrow starting
from the middle of a level which nominally extends from 0 to 1 can be obtained simply
by specifying a position 0.5. If either posn1 or posn2 is specified as Automatic, the
arrow is made vertical, its horizontal position determined by whichever coordinate is not

LevelScheme user's guide 22

Version 3.30

specified as Automatic. (This is especially useful when it is desired that the arrow
should remain vertical even though one or both of the levels might need to be moved
horizontally as the level scheme is edited. Without the Automatic value, a new value
for posn1 or posn2 would have to be entered manually each time the left end of either
level moved.)

The abbreviated form Trans[level1,level2] takes its starting and ending posi-
tions from the option EndPositions. This is useful if many transition arrows are to
be drawn with the same horizontal start and end positions, as is often the case for the
transitions within a band or between two bands. Then EndPositions can simply be
specified once using SetOptions, and it will apply to all the transitions.

The alternate forms Trans[point1,point2] or Trans[{point1,…,pointn}]
allow an arrow to be drawn freehand between the specified points, where no levels exist,
exactly as for SchemeArrow. Note, however, that to draw an arrow with one end on a
level and the other end "dangling", it is often more convenient to define an invisible
"phantom" level, by calling Lev with the option setting Show→False, and then to use
the command Trans to draw an arrow between the visible level and the phantom level.

option name default value

Kink None Coordinates of kink points for bent arrow Hfor
LineArrow onlyL; value may be a single point or a list
8point1, …, pointn< ; value None indicates no kink

Option for specification of intermadiate points in transition arrow.

Often it is necessary to introduce one or more "kinks" into a transition arrow,
i.e., make a multi-segment arrow. The first and last points of the arrow are specified as
usual by giving the level IDs, while the intermediate points are specified with the option
Kink. The value given for Kink my be either a single point or a list of several points.
Each point may be specified simply as a coordinate pair {x,y} in ordinary user coordi-
nates. Alternatively, each may be specified as a position relative to the head or tail of
the arrow, in user coordinates or printer's points, as FromHead[{x,y}], From-
Tail[{x,y}], FromHead[Point[{x,y}]], or FromTail[Point[{x,y}]].
Note that the FromHead or FromTail notations may also be used for the intermediate
points in SchemeArrow[{point1,…,pointn}] or Trans[{point1,…,pointn}].
Some examples of kinked transition arrows follow.

Trans[
 lev1,lev2,
 Kink→{FromTail[Point[{20,20}]],FromHead[Point[{-20,20}]]},SegmentL→2,

LevelScheme user's guide 23

Version 3.30

 LabL→100
],

100

SetOptions[Lev,Margin→0.2],
SetOptions[Trans,
 EndPositions→{0.2,0.8},Kink→{FromTail[{-0.10,0}],FromHead[{+0.30,0}]},
 HeadLength→5,HeadLip→2,
 BackgroundC→Automatic,OffsetC→{+1,0},PosnC→0.2,
 Color→Red
],
...
Trans[p90,d0,LabC→100],
Trans[p90,d40,LabC→80],

1+ 0

1+ 40

0+ 90

100

80

option name default value

ConversionColor White Color for conversion electron part of arrow.

ConversionSide Right Side on which conversion shading appear;
value can be Left or Right

ConversionCoeff None Conversion coefficient, which is the ratio of
the width of the conversion electron shaded part
of the arrow to the width of the non–shaded part;
value may be None , or a nonnegative real number,
or Infinity for a fully–converted transition

Options controlling split shading for combined gamma ray and conversion electron transition arrows. These are used for ShapeArrow only.

Gamma-ray transitions with a conversion electron component are traditionally
indicated by an arrow shaded with two different colors. Such an arrow may be drawn as
a ShapeArrow with the option ConversionCoeff. The appearance of the conver-

LevelScheme user's guide 24

Version 3.30

sion electron shading can be controlled with the options ConversionColor and
ConversionSide. It is strongly recommended to set HeadLip→0 for these arrows,
since otherwise even a transition with zero or small conversion coefficient will have a
big shaded "corner" in its arrowhead.

g+c.e.

E
 0 BAD :

Should set
lip to 0

option name default value

SquiggleWavelength 10 Wavelength of sinusoid in printer' s points

SquiggleBuffer 2 Minimum length of straight arrow shaft at either
end of sinusoid, before arrowhead or end of arrow

SquiggleSide Right Side on which sinusoid starts

PlotPoints 32 Number of plotting points along curve per wavelength

Options controlling squiggle properties.

The wavelength of a SquiggleArrow is controlled with the option Squig-
gleWavelength. The sinusoidal part of a squiggle arrow always contains an integer
number of "humps" or half wavelengths. A short length of straight arrow shaft appears
at either end of the sinusoid, making up the extra length needed for the arrow, before
any arrowhead. The minimum length of these segments is controlled by the option
SquiggleBuffer.

General drawing shapes

The remaining drawing commands produce general-purpose shapes, not special
to level schemes. They are essentially enhanced versions of the Mathematica shape
drawing primatives, but with outline, fill, and labels combined in one object. Their ease
of use, with the machinery set up for controling their appearance through options, makes
them useful for many diagramming, drawing, and plotting tasks.

LevelScheme user's guide 25

Version 3.30

SchemeLine@8
point1, point2, … <D

Line

SchemePolygon@8
point1, point2, … <D

Polygon, with outline and fill

SchemeBox@88 x1, x2 <, 8
y1, y2 <<D , SchemeBox@8
x1, y1 <, 8 x2, y2 <D ,
SchemeSquare@8 x, y <, radiiD

Rectangular box with outline and fill

SchemeCircle@8 x, y <, radiiD Circle or ellipse, as specified by radii , with outline and fill

SchemeCircle@8 x,
y <, radii , 8 theta1, theta2 <D

Circular or elliptical arc, as specified by radii , with outline and fill

Shape drawing commands.

SchemeLine produces an arbitrary open curve. It is thus simply an alternative
to the Mathematica Line primative, but one which respects LevelScheme outline style
options. Arrow heads may be drawn on either end of the line, by specifying
ShowTail→True or ShowHead→True, and the properties of these arrowheads can
be specified exactly as described above for line arrows.

PointList=Table[{x,x^3},{x,-1,1,0.1}],
SchemeLine[PointList,Thickness->2,ShowHead→True]

SchemePolygon produces an arbitrary closed curve, with both an outline and
fill. It is thus an enhanced version of the Mathematica Polygon primative.

SchemeBox produces a rectangle with outline, fill, and top, bottom, left, right,
and center labels. It is thus an enhanced version of a Mathematica Rectangle
graphics primative. Note that there are several different ways of specifying the
rectangle's coordinates. It is usually most convenient to specify the x and y coordinates
as a pair of ranges 88x1, x2<, 8y1, y2<<. Alternately, you can specify the corner points
8x1, y1< and 8x2, y2<. The first syntax is provided for consistenty with PlotRange, the
second for consistency with Rectangle. If you wish instead to specify the center
point of the rectangle and x and y half-widths, this is accomplished using the
otherwise-identical SchemeSquare drawing object. The syntax for specifying the
half-widths is the same as for the "radii" given to SchemeCircle, discussed below.

LevelScheme user's guide 26

Version 3.30

SchemeBox can be used for various purposes within a level scheme, such as to
highlight a level, provide a boxed title for the scheme, or create a gray band representing
a resonance. However, SchemeBox is also a general-purpose drawing element ideal
for the construction of many kinds of block diagrams, tables, grids, and bar charts, since
its ready-made outline, fill, and sundry labels cover most common features needed in
table cells. It is especially useful in conjunction with the Mathematica Table
list-construction function, which can be used to automate the construction of large
arrays of boxes. For instance, a table of nuclides can be created with the help of data
provided by the Mathematica Miscellaneous`ChemicalElements` package,
which provides the chemical symbol for each element and a list of stable isotopes.
Thus, the labeling of each square and shading of the stable isotopes can be automated,
as in the following example. The full code for this example may be found in
LevelSchemeExamples.nb.

Table[
 SchemeBox[{{N-1,N+1},{Z-1,Z+1}},LabC->ChemicalSymbol[N,Z],
 FillColor→If[IsStable[N,Z],LightGray,LightBeige],
 BackgroundC→If[IsStable[N,Z],LightGray,LightBeige]],
 {Z,ZMin,ZMax,2},{N,NMin,NMax,2}
]

84 86 88 90 92 94 96
N

58

60

62

64

66

68

70

72

Z

142 Ce 144 Ce 146 Ce 148 Ce 150 Ce 152 Ce 154 Ce

144 Nd 146 Nd 148 Nd 150 Nd 152 Nd 154 Nd 156 Nd

146 Sm 148 Sm 150 Sm 152 Sm 154 Sm 156 Sm 158 Sm

148 Gd 150 Gd 152 Gd 154 Gd 156 Gd 158 Gd 160 Gd

150 Dy 152 Dy 154 Dy 156 Dy 158 Dy 160 Dy 162 Dy

152 Er 154 Er 156 Er 158 Er 160 Er 162 Er 164 Er

154 Yb 156 Yb 158 Yb 160 Yb 162 Yb 164 Yb 166 Yb

156 Hf 158 Hf 160 Hf 162 Hf 164 Hf 166 Hf 168 Hf

LevelScheme user's guide 27

Version 3.30

SchemeCircle produces a circle or ellipse with outline, fill, and top, bottom,
left, right, and center labels. Beginning and ending angles can be specified for drawing
an arc. SchemeCircle is thus an enhanced version of the Mathematica Circle and
Disk primatives. Arrow heads may be drawn on either end of the arc, by specifying
ShowTail→True or ShowHead→True, as described above for line arrows. Note
that an extra label LabX is also defined, drawn a fraction PosnX of the way along the
arc.

Circles in Mathematica generally suffer from being distorted into ellipses. A
"circle" of radius 1 in Mathematica is drawn as an ellipse 1 horizontal plotting unit wide
and 1 vertical plotting unit high — But this is not a circle at all unless the horizontal and
vertical plotting scales happen to be identical! SchemeCircle allows the units in
which the horizontal and vertical radii are given to be specified explicitly: both radii in
horizontal plotting units, both radii in vertical plotting units, or both radii in printer's
points. This facilitates the drawing of true circles and can be convenient for specifying
ellipses as well. The possible forms of the radii argument are r, {r1,r2},
Horizontal[r], Horizontal[{r1,r2}], Vertical[r],
Vertical[{r1,r2}], Point[r], and Point[{r1,r2}].

SchemeCircle[{.5,10},0.4,LabB→"Squashed!"],
SchemeCircle[{2.0,10},Horizontal[0.4],LabB→"Circle"],
SchemeCircle[{2.5,10},Vertical[0.4],FillColor→Red],
SchemeCircle[{3.5,10},Horizontal[{0.4,0.2}],LabB→"Ellipse"],
SchemeCircle[{4.8,10},Horizontal[0.4],{3*Pi/4,Pi/4+2*Pi},LabB→"Pie"],

0 1 2 3 4 5
0

5

10

15

20

Squashed!
Circle

Ellipse
Pie

The following simple diagram makes use of several of the drawing objects just
described.

Figure[
 {

 (* target *)
 SchemeSquare[{0,0},{0.03,0.3},FillColor→Gold],

LevelScheme user's guide 28

Version 3.30

 (* beam *)
 SetOptions[SchemeArrow,ArrowType→MultilineArrow,
 ShaftLines→3,FillColor→LightGray],
 SchemeArrow[{-2,0},{0,0},ShowHead→False,HeadLength→0],
 SchemeArrow[{0,0},{2,0},Dashing→Automatic,ShowFill→False],

 (* gamma rays *)
 SetOptions[SchemeArrow,ArrowType→SquiggleArrow],
 SchemeArrow[{0,0},{1,1},Color→Blue,SquiggleWavelength→8],
 SchemeArrow[{0,0},{-1,-1},Color→Red,SquiggleWavelength→12],
 SchemeCircle[

{0,0},0.3,{0,Pi/4},
ShowFill→False,
LabX→"θ",PosnX→0.5,BufferX→1,OrientationX→Horizontal

]

 },
 PlotRange→{{-2,2},{-1,1}},
 ImageSize→72*{4,2}
];

q

Labels

Several commands are provided for drawing stand-alone labels which are not
part of any other object. Some of these labels are positioned manually, and others are
positioned automatically with respect to a named level. The label positioning options are
similar to those discussed above, but with no letter appended to their names:
ShowText (not ShowLab), Orientation, Offset, Nudge, and Background.

ManualLabel@
point, contentsD

Writes a label at coordinates point

ScaledLabel@
scaledpoint, contentsD

Writes a label at scaled coordinates scaledpoint ,
where 80, 0< is the lower left corner of the current plot region and 81, 1< is the upper right corner

General label drawing commands.

LevelScheme user's guide 29

Version 3.30

ManualLabel is used to place a label at a specific position according to
coordinates.

ScaledLabel is used to place a label at a specific fraction of the way across
and up the display region, without reference to the coordinate system. (See the section
on coordinate systems below for a description of "scaled" coordinates.) This is useful
for plot titles, which should not have their position affected by the choice of coordinate
range.

SchemeBracket@ Top ê
Bottom , 8 x1, x2 <, yD ,
SchemeBracket@ Left ê
Right, x , 8 y1, y2 <D

Bracket with label

Bracket drawing commands.

SchemeBracket is used to produce bracket-like labels. The bracket consists
of a main line segment with an angled line segment at each end. It is therefore very
similar in construction to a line arrow with an arrowhead at each end. In fact, Scheme-
Bracket respects the same arrowhead control options (ShowHead, HeadLength,
HeadLip). The bracket label is specified with LabB, LabL, LabT, or LabR, as appro-
priate, and its positioning along the length of the bracket is controlled with the option
PosnB, PosnL, PosnT, or PosnR, much like for an arrow label. The following pro-
vides a simple example.

SchemeBracket[Bottom,{-1,1},-1.2,LabB->"Domain"],
SchemeBracket[Right,+1.2,{-1,1},LabR->"Range"]

Domain

egna
R

When SchemeBracket is used to annotate levels in level schemes, the x range
or y range may be replaced by a pair of level IDs, as in the following example.

LevelScheme user's guide 30

Version 3.30

SetOptions[SchemeBracket,HeadLength→6,HeadLip→6,Color→Red,FontSize→
15,FontWeight->"Bold"],
SchemeBracket[Bottom,{lev1,lev2},-0.5,LabB->"τ=2"]

4+ 2+

t=2

LevelLabel@
level, side, contentsD

Writes a label adjacent to the left or right endpoint of the level
level Hwith an optional call–out lineL or above or below the level,
depending whether side is Left , Right , Top , or Bottom

BandLabel@ level,
contentsD , BandLabel@
level, posn, contentsD

Writes a label centered below the level level or at horizontal position posn relative to its left end

Special label drawing commands for level schemes.

option name default value

CallOutVector None Specification 8xdist, ydist<
of call-out line between level and label ;
value None indicates no call–out line

Gap 0 Horizontal gap between level end point and label,
in printer ' s points; if a call–out line is present,
can be specified as 8inner, outer<
to separately control the distance between the level and
the line and the distance between the line and the label

Special label positioning options for LevelLabel.

LevelLabel essentially provides an extra left, right, top, or bottom label for a
level. For left or right labels, the annotation can be connected to the end point of the
level with a "call-out" line, and the horizontal gap between the annotation and the level
can also be controlled, as specified by the options CallOutVector and Gap.

BandLabel positions its label by default immediately below the center of the
specified level, or the horizontal position can be specified with an optional extra
parameter. This is useful for putting a label beneath a band of levels. BandLabel
produces essentially the same result as a LevelLabel attached to the Bottom of a
level, but the separate command BandLabel is provided both for backward
compatibility and so that label font options can be set separately for band and level
labels.

LevelScheme user's guide 31

Version 3.30

The following figure illustrates the use of several label types.
SetOptions[SchemeObject,FontSize→15,FontColor→Red],
ScaledLabel[{0.05,0.95},"Expt",Offset→{-1,+1}],
ManualLabel[{0.5,50},"ª",FontWeight->"Bold"],
LevelLabel[lev0,Right,"100 y",CallOutVector→{15,-5},Dashing→Automatic],
LevelLabel[lev100,Right,"50 ps"],
BandLabel[lev0,"g.s. band"]

0

100
Expt

ª

100 y

50 ps

g.s. band

Illustration of the use of labels.

III. Including Mathematica plots and other graphics

Two-dimensional graphics

RawGraphics@ graphics , ...D Includes one or more Mathematica graphics objects in the drawing

Command for including Mathematica graphics in a LevelScheme drawing.

Any two-dimensional graphics drawn in Mathematica, such as function plots,
data plots, and geometric figures, can be included in a LevelScheme drawing using the
RawGraphics command. The usual LevelScheme drawing style options can be
applied to the graphics (in this case, they are Show, Color, Thickness, and Dash-
ing). However, these only control the default drawing style. Some Mathematica graph-
ics functions (e.g., Plot when the PlotStyle option is specified) might override
these. The drawing Layer (discussed in a later section) can be specified as well.

A very simple example combining Mathematica function plots with Level-
Scheme's convenient labeling and annotation features follows.

ScaledLabel[{0.5,0.9},"Sine waves",FontSize→15],
SchemeArrow[{Pi+0.3,0.5},{Pi,0},LabT->"Node",
 OrientationT→Horizontal,FontSize→15,Color→Blue],

LevelScheme user's guide 32

Version 3.30

RawGraphics[Plot[Sin[x],{x,0,2*Pi}],Thickness→2],
RawGraphics[Plot[Cos[x],{x,0,2*Pi}],Thickness→2,Dashing→Automatic]

Sine waves

Node

Users who have previously used Show or GraphicsArray to manipulate and
combine Mathematica plots should note that there is no need to set DisplayFunc-
tion→Identity while generating plots (see the Mathematica documentation for an
explanation if this is unfamiliar). This is since the normal Mathematica plot display
function is temporarily disabled inside Figure. Also, RawGraphics is capable of
processing graphics involving any combination of conventional coordinates and coordi-
nates specified in Mathematica Offset or Scaled notation.

Three-dimensional graphics

ViewPort@8
graphics, … <, 88
x1, x2 <, 8 y1, y2 <<D

Displays three–dimensional graphics within a LevelScheme figure,
inset within the coordinate rectangle 88 x1, x2 <, 8 y1, y2 <<

ScaledViewPort@8
graphics, … <, 88 x1s,
x2s <, 8 y1s, y2s <<D

Displays three–dimensional graphics within a LevelScheme figure,
inset within the scaled coordinate rectangle 88 x1s, x2s <, 8 y1s, y2s <<

Command for including 3D graphics.

Any three-dimensional Mathematica graphics may be included in a two-dimen-
sional figure using the commands ViewPort or ScaledViewPort. The commands
ViewPort or ScaledViewPort accept all the usual options for Graphics3D,
such as options controlling the display range and perspective (PlotRange, BoxRa-
tios, ViewPoint, etc.) and options controlling the coloring and lighting effects
(LightSources, etc.). All these options are described in detail in the Mathematica
help.

LevelScheme user's guide 33

Version 3.30

For instance, the three-dimensional plot in panel (a) below was incorporated into
the figure using the following code:

ScaledViewPort[
 {
 ParametricPlot3D[
 {
 beta*Cos[gamma],
 beta*Sin[gamma],
 -8*Sqrt[5]*beta^2+100*beta^4
 },
 {beta,0,0.45},{gamma,-60*Degree,180*Degree,15*Degree}
]
 },
 {{0.1,0.9},{0.1,0.9}},
 PlotRange→{-1,0.5},
 BoxRatios→{1,1,1},Boxed→False,Axes→False,
 ViewPoint→{-0.763, -3.032, 1.294}
],

r

q
x

y

HaL HbL

SchemeLine3D@8
point1, point2, … <D

Line

ManualLabel3D@
point, contentsD

Label at coordinates point

SchemeArrow3D@ P1, P2D ,
 SchemeArrow3D@
P1, P2, headangleD

Arrow from point1 to arbitrary point2 , with optional headangle controlling head orientation

3D graphics objects.

LevelScheme user's guide 34

Version 3.30

At present, LevelScheme includes only a very limited set of tools for drawing
and annotating three-dimensional diagrams. Three-dimensional analogues of Scheme-
Line, ManualLabel, and SchemeArrow are provided. See the Mathematica docu-
mentation for information on displaying three-dimensional graphics. Some of these
were used to draw the diagram in panel (b) of the example figure above.

The three-dimensional analogue of SchemeLine is SchemeLine3D. The
usual LevelScheme line style options can all be specified: Color, LineColor, Dash-
ing, and ShowLine.

The three-dimensional analogue of ManualLabel is ManualLabel3D.
Most, but not all, of the usual LevelScheme label control options can be specified:
Color, FontFamily, FontSize, FontWeight, FontSlant, FontTracking,
FontColor, BackgroundFontSizeFactor , Offset, Orientation, Show-
Text, Background.

The three-dimensional version of the LevelScheme-style arrow is Scheme-
Arrow3D. It is a simple line arrow, with optional head and tail, and one label (LabC)
attached. The arrowhead will only appear with the proper proportions if the 3D display
option BoxRatios is set in proportion to the x, y, and z plot ranges.

IV. Figure construction

Coordinate systems

Preparing a figure with multiple parts becomes much easier if it is possible to
draw each part in a separate "coordinate system" and then, separately, decide how these
parts should be arranged with respect to each other. In this section, we first consider a
simple tool for shifting parts of a diagram with respect to each other and for rescaling
axes, then we address the full machinery needed to make inset plots or to make multi-
panel plots.

LevelScheme user's guide 35

Version 3.30

SetOrigin@ x0D ,
SetOrigin@8 x0,
y0 <D , SetOrigin@D

Sets the user origin to 8 x0 , 0< or to 8 x0, y0 <, or with no argument resets offset to zero

SetScale@ yscaleD ,
SetScale@8 xscale,
yscale <D , SetScale@D

Sets the user coordinate scale factors to 81, yscale < or to 8
xscale, yscale< , or with no argument resets scale to unity

SetRegion@88 x3c, x4c <, 8
y3c, y4c <<, 88 x3r, x4r <, 8
y3r, y4r <<D , SetRegion@D

Sets the current plotting region coordinate system as specified,
or with no arguments resets it to the full canvas

Commands for coordinate system control.

Frequently it is necessary to draw side-by-side level schemes or diagrams with
multiple parts. Side-by-side level schemes can easily be drawn by preceding the code
for each scheme with SetOrigin[x0] to control its horizontal position. All the
coordinates for the objects in each scheme are specified relative to the "zero" for that
scheme, so the user does not need to manually add an offset to the horizontal
coordinates of each level. This allows easy adjustment of the inter-scheme spacing
simply by redefining the x0 values.

SetOrigin[0],
ManualLabel[{0.1,1.0},"Nucleus A"],
Lev[lev0,0,1,"0.000"],
Lev[lev1,0,1,"0.632"],

SetOrigin[1.1],
ManualLabel[{0.1,1.0},"Nucleus B"],
Lev[lev0,0,1,"0.000"],
Lev[lev1,0,1,"0.542"],

SetOrigin[2.2],
ManualLabel[{0.1,1.0},"Nucleus C"],
Lev[lev0,0,1,"0.000"],
Lev[lev1,0,1,"0.704"]

LevelScheme user's guide 36

Version 3.30

Nucleus A

0.000

0.632

Nucleus B

0.000

0.542

Nucleus C

0.000

0.704

Side-by-side level schemes created with SetOrigin.

Even within a single level scheme, if there are multiple families of levels (e.g., bands or
group representations) it can be convenient to enter the horizontal coordinates within
each family of levels as if they started from zero and then use SetOrigin to move the
families around to their final positions. This practice makes later adjustments to the
layout (spreading out the spacing, inserting new families of levels) much simpler. Set-
Origin can be used to produce a vertical offset as well, and SetScale allows multi-
plicative factors to be applied to all horizontal or vertical coordinates. Thus, for
instance, SetScale is useful for ad hoc adjustments to the energy scale of a level
scheme. In the following section, tools will be described allowing each part of a dia-
gram to be accompanied by axes which respect the current scale factors.

To construct more sophisticated multipart figures, it is very useful to be able to
define a smaller rectangular plotting "region" within the full figure (or "canvas", to use
artistic imagery) and to arbitrarily choose a new range for the horizontal and vertical
plotting scales within this region. Two sets of information are needed to define the
plotting region: (1) where the region lies on the canvas and (2) the coordinate range
used within the region. These are specified using SetRegion. The arguments are the
"canvas" coordinates and "region" coordinates for the lower and upper limits of the
rectangle, which are, equivalently, the coordinates of the corner points denoted 3 and 4
in the diagram below.

LevelScheme user's guide 37

Version 3.30

Canvas

Hx1, y1L

Hx2, y2L

Region

Hx3, y3L

Hx4, y4L

User

LevelScheme canvas, region, and user coordinates.

The effects of SetOrigin or SetScale can be combined with those of SetRe-
gion: for instance, after SetRegion is used to define a plotting region, SetOrigin
can be used to move around parts of a diagram within this region. In practice, most
users will rarely if ever use SetRegion directly. Instead, the Panel command of the
following section will be used to set the plotting region and draw axes, labels, etc., all in
one step.

The following is a brief summary of the different coordinate systems used by
LevelScheme. The Mathematica graphics system recognizes only one set of coordi-
nates, the Mathematica plotting coordinates, which span the range defined by the option
PlotRange given to Figure. However, the LevelScheme package defines four other
coordinate systems, superposed upon these basic coordinates. The five, in total, coordi-
nate systems are

Canvas coordinates: The usual Mathematica plotting coordinates.

LevelScheme user's guide 38

Version 3.30

Absolute coordinates: The physical distance in printer's points from the lower left
corner of the plot.

Region coordinates: The redefined coordinates on an inset rectangle within the canvas.

Scaled coordinates: The fractional distance, from 0 to 1, across the inset rectangle.

User coordinates: Coordinates which may differ from the region coordinates by hav-
ing and additional user-defined offset and scale. These are the coordinates in which the
user specifies all object positions.

Normally all graphics are clipped to the current plotting region. This is true both
for LevelScheme drawing objects and for Mathematica graphics included via Raw-
Graphics. (Clipping may be disabled by specifying ClipToRectangle→False.)
Lines, polygons, and rectangles are truncated exactly to the edge of the region. Circles
and points are simply included or excluded depending upon whether or not their center
point lies within the region. Text is similary included or excluded depending upon the
coordinates of the reference point.

Panels and multipanel plots

A major capability needed for generating publication-quality figures is the abil-
ity to create plotting panels in arbitrary positions, in order to make inset plots, multi-
panel plots, or other arrangements of plots. This capability is not built in to Mathemat-
ica, but the LevelScheme package provides a flexible system for producing plots with
subpanels, based on the coordinate arithmetic infrastructure of the preceding section.

Panel@88 x3c,
x4c <, 8 y3c, y4c <<D

Draws a panel, optionally including a frame, frame ticks, frame labels,
a background color, and a panel letter label; sets the plotting region to this panel

ScaledPanel@88
x3s, x4s <, 8 y3s, y4s <<D

Draws a panel, as above, but covering the specified range of scaled coordinates,
i.e. , fraction of the current plotting region

Panel generation commands.

LevelScheme user's guide 39

Version 3.30

option name default value

XPlotRange Automatic Horizontal coordinate range
covered by plotting region coordinates ;
if Automatic , same as canvas coordinates

YPlotRange Automatic Horizontal coordinate range
covered by plotting region coordinates ;
if Automatic , same as canvas coordinates

PlotRange Automatic Alternative means of specifying coordinate
range covered by plotting region coordinates ;
if Automatic , plot range is controlled by
XPlotRange and YPlotRange options instead

ExtendRange 0 Fractional amount by which
plot range should be extended on each side,
to allow extra visual space or room for labels;
separate values 8horizontal, vertical< or 88
left, right <, 8 bottom, top << may be specified

Panel plot range options.

option name default value

Background None Background color for panel

Frame True Whether or not to draw frame line

ShowEdge 8True, True,
True, True<

If frame line is drawn, which individual edges to draw

Color Black Color for frame, ticks, and labels Hbut not backgroundL
LineColor ,
Thickness ,
Dashing ,
DashingGap ,
DashingCorrection ,
 ShowLine

same defaults as usual Line style options for frame

FontColor ,
FontSize ,
FontFamily ,
FontWeight ,
FontSlant ,
FontTracking ,
BackgroundFontSiz
eFactor

same defaults as usual Font style options for frame labels,
also serving as default for ticks and panel
letter if not overriden by other options below

Basic panel style options.

LevelScheme user's guide 40

Version 3.30

option name default value

LabB , LabL ,
LabT , LabR

None Bottom, left, top, and right frame labels

... and the usual
label positioning
options, plus ...

Posn X Automatic Position of label along frame edge X ; value is specified as
fraction of distance between ends of axis;
see similar option for transition arrow labels

Buffer X Automatic Buffer spacing between label X and arrow shaft,
as multiple of half current font height;
see similar option for transition arrow labels

FrameLabel Automatic Alternative specification of frame labels,
provided for consistency with Plot , etc. ; value of
Automatic specifies that the usual LevelScheme labels
LabB , LabL , LabT , and LabR should be used

Panel frame label options.

option name default value

FrameTicks None Tick mark definition list for frame edges;
value may be None , Automatic ,
or a list of up to four individual axis specifications

TickNudge 80, 0, 0, 0< Horizontal and vertical fine-tuning adjustment to be applied
to all the tick labels on each of the four panel edges

ShowTicks 8True, True,
True, True<

Whether or not to allow
display of tick marks Hif any specified by
FrameTicks L on each of the four panel edges

ShowTickLabels 8True, True,
True, True<

Whether or not to allow display
of labels on tick marks Hif any specified by
FrameTicks L on each of the four panel edges

TickLineColor ,
TickThickness ,
TickShowLine

Automatic Line style options for ticks ; if
Automatic , same as for frame line;
can be overridden for individual ticks by Mathematica
tick style directives Hsee CustomTicks documentationL

TickFontColor ,
TickFontSize ,
TickFontFamily ,
TickFontWeight ,
TickFontSlant ,
TickFontTracking

Automatic Font specifications for tick mark labels ; if Automatic ,
values are obtained from options FontColor , …

Panel tick mark options.

LevelScheme user's guide 41

Version 3.30

option name default value

PanelLetter None Contents of panel letter label

PanelLetterCorner 8−1, +1< Corner in which
panel letter should appear;
8−1, +1< for left–top,
8+1, +1< for right–top, etc.

PanelLetterInset 815, 15< Horizontal and vertical inset of panel
letter label from specified corner,
in printer' s points

PanelLetterFontColor ,
PanelLetterFontSize ,
PanelLetterFontFamily ,
PanelLetterFontWeight ,
PanelLetterFontSlant ,
PanelLetterFontTracking

Automatic Font specifications for panel
letter label ; if Automatic ,
values are obtained from options
FontColor , …

ShowPanelLetter ,
PanelLetterOffset ,
PanelLetterNudge ,
PanelLetterOrientation ,
PanelLetterBackground

same defaults as for usual
label positioning options

Positioning options
for panel letter label

Panel letter formatting options.

The command Panel sets the specified rectangle as the current plotting region
and draws the various ancillary items, such as a frame, tick marks, and labels, around it.
The PlotRange option determines the coordinate ranges plotted within this box
("region coordinates"). After the contents of the panel have been drawn, the plotting
region can be restored to the whole canvas by calling SetRegion[] with no
arguments.

There are many formatting options, listed above, which can be used to control
the details of a panel. These control five main parts of the panel: (1) a solid colored
background rectangle, (2) a frame line, (3) ticks on each frame edge, (4) an axis label on
each frame edge, and (5) a panel letter label. Several options require a list of four val-
ues, one for each edge. These are specified in the same ordering convention used by
Mathematica plotting functions: bottom, left, top, right.

LevelScheme user's guide 42

Version 3.30

As already noted, the PlotRange option determines the coordinate ranges
plotted within the panel. But, if PlotRange is left as Automatic, the horizontal and
vertical plot ranges can instead be set separately, with the options XPlotRange and
YPlotRange. This is often convenient in more complicated multipanel plots, as
described below. If XPlotRange and YPlotRange in turn are left as Automatic,
the canvas coordinates covered by the panel are simply used.

The tick mark intervals and properties can be chosen manually using the func-
tion LinTicks (see the separate user guide for the LevelScheme CustomTicks pack-
age). Or, they can be specified as Automatic, in which case they are constructed
automatically by the CustomTicks package, using whatever current style options are in
effect for LinTicks.

Following is an illustration making use of many of these options. It is worth
noting some details of the example. The canvas plot range ({{-0.2,1.1},{-
0.2,1.1}}) is chosen to allow a margin around the outermost panel
({{0,1},{0,1}}) so that the tick and axis labels around it can still fit within the plot.
A panel axis label is by default positioned flush against the panel frame. So in this exam-
ple the bottom label (LabB) must be manually moved down (BufferB→2.5) to allow
room for the tick marks. (LevelScheme does not do this automatically, since Mathemat-
ica does not provide any mechanism whereby a Mathematica program can calculate
how much room to allow for text.) For aesthetic reasons, the tick mark labels for the
main panel in this example are drawn in a smaller font size (TickFontSize) than the
main frame labels, and the tick marks for the inset panel are smaller yet.

Figure[
 {

 (* main panel *)
 Panel[
 {{0,1},{0,1}},
 PlotRange->{{0,20},{-0.6,1.1}},
 FrameTicks→{LinTicks[0,20],LinTicks[-1,1,0.5,5]},
 FontSize→15,LabB→textit["x"],BufferB→2.5,
 TickFontSize→12,
 Background→Wheat
],
 SchemeLine[{{0,0},{20,0}}],
 ScaledLabel[{0.2,0.9},SubscriptBox[textit["J"],"ν"],FontSize→15],
 RawGraphics[Plot[BesselJ[0,x],{x,0,20}]],
 RawGraphics[Plot[BesselJ[1,x],{x,0,20}],Dashing→Automatic],

 (* inset panel *)
 ScaledPanel[
 {{0.55,0.95},{0.55,0.95}},

LevelScheme user's guide 43

Version 3.30

 PlotRange->{{0,20},{-0.6,1.1}},
 FrameTicks→{LinTicks[0,20],LinTicks[-1,1,0.5,5]},
 TickFontSize→10,
 Background→Eggshell
],
 SchemeLine[{{0,0},{20,0}}],
 ScaledLabel[{0.2,0.9},SubscriptBox[textit["Y"],"ν"],FontSize→12],
 RawGraphics[Plot[BesselY[0,x],{x,0,20}]],
 RawGraphics[Plot[BesselY[1,x],{x,0,20}],Dashing→Automatic]

 },
 PlotRange→{{-0.2,1.1},{-0.2,1.1}},ImageSize→72*{6,4}
];

0 5 10 15 20
x

-0.5

0.0

0.5

1.0
J n

0 5 10 15 20
-0.5

0.0

0.5

1.0 Y n

Multipanel@88 x3c,
x4c <, 8 y3c, y4c <<D,
8 rows, columns <D

Defines settings for a multipanel array

Panel@8 row, column <D Draws a panel as part of a multipanel array

Multipanel array generation commands.

LevelScheme user's guide 44

Version 3.30

option name default value

XPanelSizes 1 List of column widths on relative scale,
or single width shared by all columns;
Automatic adjusts the widths to provide
equal horizontal coordinate scales on all panels

YPanelSizes 1 List of row heights on relative scale,
or single height shared by all rows;
Automatic adjusts the heights to provide
equal vertical coordinate scales on all panels

XGapSizes 0 List of intercolumn gap widths on relative scale,
or single width shared by all intercolumn gaps

YGapSizes 0 List of interrow gap heights on relative scale,
or single height shared by all interrow gaps

Margin 0 Margin in printer' s points by which the multipanel plot as a
whole should be indented relative to the given coordinates,
typically to allow room for frame labels;
separate values 8horizontal, vertical< or 88
left, right <, 8 bottom, top << may be specified

Multipanel layout options.

LevelScheme user's guide 45

Version 3.30

option name default value

XPlotRanges Automatic List of horizontal plot ranges to be
used for the columns of a multipanel array,
or single range to be repeated for all columns,
or array giving values for all panels individually

YPlotRanges Automatic List of vertical plot ranges to be
used for the rows of a multipanel array,
or single range to be repeated for all rows,
or array giving values for all panels individually

XFrameLabels None List of horizontal axis labels to be
used for the columns of a multipanel array,
or single value to be repeated for all columns,
or array giving values for all panels individually

YFrameLabels None List of vertical axis labels to be
used for the rows of a multipanel array,
or single value to be repeated for all rows,
or array giving values for all panels individually

XFrameTicks Automatic List of horizontal axis tick specifications to
be used for the columns of a multipanel array,
or single specification to be repeated for all columns,
or array giving values for all panels individually

YFrameTicks Automatic List of vertical axis tick specifications
to be used for the rows of a multipanel array,
or single specification to be repeated for all rows,
or array giving values for all panels individually

Multipanel axis specification options.

option name default value

ShowFrameLabelsEx
terior

8True, True,
False, False<

Whether or not to allow display of frame
labels on exterior panel edges in a multipanel array

ShowFrameLabelsIn
terior

8False, False,
False, False<

Whether or not to allow display of frame
labels on interior panel edges in a multipanel array

ShowTickLabelsExt
erior

8True, True,
False, False<

Whether or not to allow display of tick labels
on exterior panel edges in a multipanel array

ShowTickLabelsInt
erior

8False, False,
False, False<

Whether or not to allow display of tick
labels on interior panel edges in a multipanel array

Multipanel setup options controlling internal and external axis labeling.

option name default value

First a Character from which panel letter sequence starts

Format 8 H , L < Strings prepended and appended to panel letter

Order Horizontal Controls whether panel lettering proceeds across or down

Automatic panel letter generation options, for use in a multipanel plot.

LevelScheme user's guide 46

Version 3.30

 LevelScheme provides tools to automate the layout of the most common form
of multipanel plot, consisting of a rectangular array of panels with shared axes. The
command Multipanel is used to define the settings for a rectangular array of panels.
At minimum, Multipanel must be told the total rectangular region of the canvas to
be used and the number of rows and columns of panels in the plot. Then
Panel[{row,column}] is used to create each individual panel. (Rows are numbered
from top to bottom and columns from left to right, starting from 1, following the usual
mathematical convention for indexing matrix entries.)

Multipanel can be given several options, which either affect the formatting
of individual panels or control the layout of the array as a whole. Almost any of the
formatting options for Panel listed at the beginning of this section can be given to
Multipanel, and the values will be saved to be used as the defaults for the panels in
the multipanel plot. (When Multipanel it invoked, it stores a complete set of format-
ting option values for the panels, so that their style is "frozen" frozen at this point. After
this point, changes can safely be made to the default options for SchemeObject or
even Panel, and this will have no effect on the panels in the multipanel plot.) The
options which cannot be specified for Multipanel are XPlotRange, YPlot-
Range, PlotRange, LabB, LabL, LabT, LabR, FrameLabel, FrameTicks, and
PanelLetter, since these must be determined separately for each panel in the plot.

The plot ranges used within each panel are determined from the options XPlot-
Ranges and YPlotRanges. The frame labels for each panel are determined from
XFrameLabels and YFrameLabels. Frame labels only appear on the bottom and
left outside edges of the array of panels. The frame ticks for each panel are determined
from XFrameTicks and YFrameTicks. Usually it is desirable to suppress the
major tick labels everywhere except the extreme outside edges of the array of panels.
Major tick labels on exterior edges are controlled with the option ShowTickLabels-
Exterior, and those on interior edges are controlled with the option ShowTickLa-
belsInterior. So, for instance, the default values

ShowTickLabelsExterior→{True,True,False,False},
ShowTickLabelsInterior→{False,False,False,False}

produce tick labels only on the far bottom and left edges of the figure, while the values
ShowTickLabelsExterior→{True,True,False,False},
ShowTickLabelsInterior→{True,True,False,False}

produce tick labels on the bottom and left edges of each panel individually.

LevelScheme user's guide 47

Version 3.30

Any of the formatting options specified for Multipanel can be explicitly
overriden for a single panel, if desired, by giving them as options to Panel as usual.
For instance, it is often convenient to override XPlotRange or YPlotRange for an
individual panel, to set the plot range independently from those of the other panels in
the same row or column.

Panel letters are calculated automatically from the row and column indices. A
starting letter other than "a" can be specified with the option First, for instance, "A"
for capital letters or some other letter if the earlier panels of the figure are to be drawn
separately. Panel letters can be turned off with ShowPanelLetter→False.

By default, all columns of panels are of equal width, all rows are of equal height,
and there are no gaps between. However, arbitrary proportions for the columns, rows,
and gaps between them can be specified using XPanelSizes, YPanelSizes, XGap-
Sizes, and YGapSizes. The columns and intercolumn gaps fill the available horizon-
tal space, keeping the proportions given in these options; only the proportions matter, so
multiplying both XPanelSizes and XGapSizes by the same factor has no effect.
The rows and interrow gaps fill the vertical space in their specified proportions simi-
larly. If XPanelSizes is set to Automatic, all the panel widths are made propor-
tional to the x plot ranges, so all panels share the same x axis scale, and similary for the
panel heights if YPanelSizes is set to Automatic.

The following is an example of a multipanel plot definition with gaps and
unequal column sizes. The full code may be found in LevelSchemeExamples.nb.

 Multipanel[
 {{0,1},{0,1}},
 {2,2},
 XPlotRanges→{{-1.5,1.5},{-Pi/4,8*Pi+Pi/4}},
 YPlotRanges→{-1.5,1.5},
 XFrameLabels→{textit["x"],textit["t"]},BufferB→2.5,
 YFrameLabels→textit["y"],BufferL→3,
 TickFontSize→10,
 XFrameTicks→
{LinTicks[-2,2,1,5],LinTicks[0,8*Pi,Pi,4,TickLabelFunction→
(Rationalize[#/Pi]*Pi&)]},
 YFrameTicks→LinTicks[-2,2,1,5],
 XPanelSizes→{1,3},XGapSizes→{0.1},
 YPanelSizes→{1,1},YGapSizes→{0.1},
 Background→Wheat,
 PanelLetterBackground→Wheat
]

LevelScheme user's guide 48

Version 3.30

Lissajous curves

-1

0

1

y

HaL HbL

-1 0 1
x

-1

0

1

y

HcL

0 p 2 p 3 p 4 p 5 p 6 p 7 p 8 p
t

HdL

option name default value

PanelAdjustments None Adjustments to positions of panel edges
88 left, right <, 8 bottom, top <<
outward from their default positions in a multipanel plot,
or negative for inward adjustments,
in the relative units defined by XPanelSizes
and YPanelSizes ; None gives no adjustment

PanelShift None Adjustment of panel position 8Dx, Dy<
relative to its regular grid position in a multipanel plot,
in the relative units defined by XPanelSizes
and YPanelSizes ; None gives no adjustment

Geometry adjustment options for Panel, applicable when Panel is used as part of a multipanel plot.

Less conventional panel layouts can be achieved by overriding the dimensions
of individual panels. In this case, the automatic left-to-right then top-to-bottom lettering
scheme may also need to be overridden. An example follows, in which the top right
panel is extended vertically to span two rows.

Multipanel[
 {{0,1},{0,1}},
 {2,2},
 XPlotRanges→{0,1},YPlotRanges→{-1,1},

LevelScheme user's guide 49

Version 3.30

 XFrameLabels→textit["x"],YFrameLabels→textit["f(x)"],BufferL→1.5,
 XPanelSizes→{2,1},XGapSizes→0.25,YGapSizes→0.1,
 Order→Vertical
],
Panel[{1,1}],
Panel[{2,1}],
Panel[{1,2},
 PanelAdjustments→{{0,0},{-1.1,0}},
 ShowFrameLabels→{True,True,False,False}
]

fHx
L

HaL

x

fHx
L

HbL

x

fHx
L

HcL

Axes

SchemeAxis@ Top ê
Bottom , 8 x1, x2 <, yD ,
SchemeAxis@ Left ê
Right, x , 8 y1, y2 <D

Axis line, with optional tick marks, arrowhead, and axis label

Stand–alone axes.

SchemeAxis is used to produce free-standing axes within a figure. Any
number of axes may be drawn, as needed, and the axes respect the plot regions or user
scaled coordinates currently in effect. They are thus very useful in providing scales for
multipart figures. The axis line has the appearance of a LineArrow and respects the
same arrowhead control options (ShowHead, HeadLength, HeadLip). Ticks are
specified with the option Ticks and must be given explicitly (e.g., with LinTicks),
not as Automatic. All the tick formatting options listed above for Panel
(ShowTicks, TickNudge, TickFontSize, etc.) can be used, except that only a

LevelScheme user's guide 50

Version 3.30

single value should be given instead of a list of four values. A single axis label can be
specified with LabB, LabL, LabT, or LabR, as appropriate, and its positioning
controlled as shown for Panel above. The following provides a simple example.

SchemeAxis[
 Left,0,{0,1.15},
 Ticks→LinTicks[0,1,0.2,2],TickFontSize→12,
 LabL->RowBox[{textit["E"]," (MeV)"}],FontSize→15,BufferL→4
]

0.000

0.632

0.0

0.2

0.4

0.6

0.8

1.0

E
H

Ve
M

L

Further description of the Figure command

The Figure command, introduced briefly earlier, accepts a list of
LevelScheme objects as its argument. The list can contain any of the objects created by
the commands described above, and arbitrary Mathematica Graphics objects can be
included so long as they are enclosed within a RawGraphics object. The Figure
command is very forgiving about the format of the object list. The objects can be
contained in arbitrarily nested sublists (for instance, if the Table list creation function
is used to automatically produce grids of boxes or bands of levels). Any non-graphical
entry in the list is quietly ignored, so arithmetic scratchwork, variable value
assignments, and careless extra commas can be included in the list without causing
problems.

LevelScheme user's guide 51

Version 3.30

option name default value

PlotRange mandatory Coordinate range covered by plotting region;
specified in the form 88 x1, x2 <, 8 y1, y2 <<;
this option is not actually optional, since the values
are needed for LevelScheme' s internal calculations

ImageSize Automatic Specifies the absolute size 8x, y<
of the displayed scheme in printer' s points ; if Automatic
a 4 inch width is used with the golden ratio aspect ratio

Axes False Controls whether or not
Mathematica ' s plot axes are displayed

Ticks None Tick marks for axes

Formatting options for Figure differing from or beyond those for Panel.

The options for Figure are essentially a subset of those encountered above for
Panel, with the few additions listed above. However, the behavior obtained with some
of these options is slightly different, since Figure relies on the Mathematica Show
function to draw the frame and tick marks, while Panel takes care of all drawing itself.

Of the basic panel properties, PlotRange, Background, Frame, Color,
most of the line style options (LineColor, Thickness, and Dashing), and most of
the font style options (FontFamily, FontSize, FontWeight, FontSlant,
FontTracking, FontColor) apply to Figure as well. For Figure, the line
style options affect only the frame or axis lines, not the tick marks. Frame labels can be
specified either with LabB, LabL, LabT, and LabR or with FrameLabel, as for
Panel, but none of the LevelScheme label positioning options apply. FrameTicks is
used to specify the frame ticks, and the tick font style options can be given as for
Panel.

A major "quirk" arising from Figure's reliance on Mathematica's Show for
drawing the frame is that Figure shrinks the main body of the plot to something
smaller than the size specified with ImageSize to make room for any tick mark or
frame labels on the outside. But font sizes are not scaled down with the rest of the plot,
so the proportion of labels to the graphics around them is affected. The shrinking is also
very undesirable if predictability and consistency of the size of the plot frame is desired
(for instance, if the plot is later to be displayed alongside others of the same size). To
avoid these problems, Figure can be used with Frame→False, and any frame
needed can be drawn manually inside the plot canvas with Panel, as in the example
given earlier.

LevelScheme user's guide 52

Version 3.30

Parallel versions of the same figure (conditional inclusion)

SchemeFlags 8< Flags set for conditional inclusion of parts of scheme

Conditional inclusion option for the Figure command.

SchemeIfDef@
flag, object1, …D

Includes objects in scheme only if flag is specified in the SchemeFlags option

SchemeIfNDef@
flag, object1, …D

Includes objects in scheme only if flag is not specified in the SchemeFlags option

Conditional figure construction commands.

The SchemeFlags option and the SchemeIfDef and SchemeIfNDef
commands are for use in maintaining multiple parallel versions of the same figure, e.g.,
one in color for conference presentation and one in black and white with figure letters
for publication, without the need for multiple separate copies of the code for the figure.
It is tedious to maintain two copies of the code, since this leads to double work
whenever changes need to be made. Rather, a single copy can be used, and any segment
of code which is applicable only to one version should be placed within a
SchemeIfDef command. It will then only be evaluated as part of the scheme when
the designated flag is set with SchemeFlags. Here is an example: the level scheme
on the left was generated with SchemeFlags→{"Title","Color"} and that on
the right with SchemeFlags→{"FigureA"}.

SchemeIfDef["Title",
 ScaledLabel[{0.05,0.95},"Expt",Color→DimGray]
],
SchemeIfDef["FigureA",
 ScaledLabel[{0.05,0.95},"(a)"]
],
SchemeIfDef["Color",
 SetOptions[Lev,Color→Blue],
 SetOptions[LevelLabel,Color→Red]
]

LevelScheme user's guide 53

Version 3.30

Expt

0

100

100 y

50 ps

HaL

0

100

100 y

50 ps

Using conditional code inclusion to maintain parallel versions of a figure.

Layers

LevelScheme organizes graphics into "layers". Objects assigned to
lower-numbered layers (background) are drawn before, and thus might be hidden by,
objects assigned to higher-numbered layers (foreground). Objects within the same layer
are rendered in the order they appear in the list given to Figure. By default, outlines
and fills are in layer 1, white-out boxes are in layer 2, and text is in layer 3. All
Mathematica graphics included using RawGraphics appear in layer 1, and the colored
background generated by Panel is drawn in layer 0. Layered drawing prevents text
labels from being hidden by other drawing elements in dense level schemes or technical
diagrams. Most importantly, with this layering system, white-out boxes hide any lines
or fills behind them, but they do not block neighboring text. This keeps nearby labels
with white-out boxes from obstructing each other. The layer of an object may be
modified with the Layer option, e.g., to push it to the background or pull it to the
foreground.

LevelScheme user's guide 54

Version 3.30

Custom tick marks

The default tick marks produced by Mathematica's plotting functions are typi-
cally not suitable for publication. Most notably, Mathematica drops trailing zeros after
the decimal point in its default tick marks, leading to a series of ticks of "ragged"
lengths (e.g., "0.", "0.5", "1.", …). The CustomTicks package, a component of the
LevelScheme system, provides extensive customization of tick mark placement and
formatting. It may be used to generate the tick mark specifications to be given as
options to SchemeAxis, Panel, or Figure, and it may also be used with Mathemat-
ica plotting functions in general. Linear, logarithmic, and general nonlinear axes are
supported. The flexibility achieved matches or exceeds that available with most commer-
cial scientific plotting software. (Beyond the considerable built-in customization
options, the user can supply arbitary label formatting or axis transformations functions
using the Mathematica programming language.) Documentation for this package may
be found in the file CustomTicksGuide.pdf.

Text formatting

Mathematica offers advanced capabilities for typesetting text and formulas.
This provides great flexibility in typesetting complex text for figure labels.
LevelScheme provides come extra commands to help typeset labels for scientific
figures.

Mathematica itself offers several alternative methods for typesetting text and
mathematical expressions, which will not be explained here since they are described in
detail in The Mathematica Book and the Mathematica online documentation. Text
properties (font, size, color, etc.) can be selected from the Format menu. There are
keyboard shortcuts (such as ‚Î^Ï for superscripts), point-and-click equation editor
palettes, and various "box" commands such as SuperscriptBox and RowBox.
(Unfortunately, some labels entered using the keyboard shortcuts containing
superscripts, italics, etc., are not reliably saved and retrieved under some versions of
Mathematica, and can therefore unexpectedly turn into garbage and have to be retyped.
Typesetting using the box commands, described in The Mathematica Book Section
2.8.10, is more completely reliable, but the commands are a bit cumbersome.)

LevelScheme user's guide 55

Version 3.30

TightRowBox@8
item1, item2, … <D

Attaches several elements horizontally to make a label

StackText@ alignment,
linespacing , 8 line1, … <D

Produces multiline label; alignment can be Left , Center , or Right

Commands for constructing composite labels.

The commands TightRowBox and StackText are provided to facilitate
laying out composite labels. TightRowBox functions similarly to Mathematica's
RowBox, combining several text elements side-by-side, but it eliminates undesirable
horizontal spacing which usually appears between elements in a RowBox.
StackText allows the construction of multiline labels with various forms of centering
and adjustable line spacing. Examples are provided at the end of this section.

textup@ textD Produces ordinary upright text

textsl@ textD Produces slanted text

textit@ textD Produces italic text

textmd@ textD Produces ordinary-weight text

textbf@ textD Produces boldface text

textrm@ textD Produces Roman text HTimesL
texttt@ textD Produces typewriter text HCourierL
textsf@ textD Produces sans-serif text HHelveticaL

textcolor@ color, textD Produces text of arbitrary color

textsize@ size, textD Produces text of arbitrary size

hspace@ distD Produces a horizontal displacement; dist
is specified in ems Ha unit equal to the width of the letter M, chosen here for technical reasonsL

Some LaTeX-like text formatting commands.

LevelScheme provides several LATEX-like commands for changing typeface.
(These are simply typing shortcuts for much longer Mathematica StyleForm directives.)

DiagonalFractionBox@
a, bD

Typesets fraction a ê b in compact, diagonal format

DiagonalFractionize@ xD Extracts the numerator and denominator of a rational number x and typesets as above

Diagonal fraction formatting.

LevelScheme user's guide 56

Version 3.30

Mathematica only displays fractions in horizontal or "slash" form (e.g., "1/2") or
in vertical form (numerator above denominator). LevelScheme provides commands
DiagonalFractionBox and DiagonalFractionize for typesetting fractions
in the more compact diagonal format, i.e., with the numerator in the "northwest" and the
denominator in the "southeast", which is often more readable in figure labels.

ManualLabel[{1,0},DiagonalFractionize[1/2]]

1ê2 1
ÅÅÅÅÅ
2

Conventional

1ê2
Diagonal

LabelJP@ spin, parityD Produces a level spin–parity label;
parity argument is optional Hdefault +L and may be +1 , −1 , or None

LabelJiP@ spin, i, parityD Produces a level spin–parity label with subscript i ;
parity argument is optional Hdefault +L and may be +1 , −1 , or None

Spin-parity labels.

There are also specialized spin-parity labels LabelJP and LabelJiP for use
in level schemes.

Following are some examples of labels formatted using these commands.
ManualLabel[{0,0},TightRowBox[{textit[SubscriptBox["E","x"]]," (keV)"}]],
ManualLabel[{0.7,0},textbf[StackText[Left,0,{TightRowBox[{SuperscriptBox[""
,"102"],"Pd"}],textsize[10,"Experiment"]}]]],
ManualLabel[{1.15,0},LabelJiP[0,2]],
ManualLabel[{1.45,0},LabelJP[DiagonalFractionize[7/2]]],
ManualLabel[{2.4,0},TightRowBox[{"137.2","
",textcolor[Red,"TENTATIVE"]}],Orientation→10*Degree]

Ex HkeVL 102Pd
Experiment

02
+ 7ê2+

2.731
EVITATNET

Although the "box" commands for creating labels may seem a little cumber-
some, they are also very powerful, since the expressions you use to create text are expres-
sions like any other Mathematica expression. For instance, they can include references
to variables, like the variable J in the example below.

LevelScheme user's guide 57

Version 3.30

Table[
 Lev[
 J/2,J/2+1,J*(J+1),
 LabC->TightRowBox[{SuperscriptBox[textit["J"],"π"],"=",LabelJP[J]}]
],
 {J,0,8,2}
]

Jp=0+
Jp=2+

Jp=4+

Jp=6+

Jp=8+

V. Producing Encapsulated PostScript (EPS) output
After creating a level scheme in Mathematica, you will usually want to export

the graphics for use in a document or presentation. The most robust approach to
exporting Mathematica graphics is to produce an Encapsulated PostScript (EPS) file.
Under Mathematica versions 4.2.1 and later, this is straightforward using the built-in
Export command. You can store the graphics produced by Figure in a variable, and
then give this as an argument to Export. For example:

P=Figure[...];
Export["c:\\work\\fig3.eps",P,"EPS"];

If you will be using this EPS file in another document, you may find it desirable
to adjust the "bounding box" for the file. Various programs, such as Ghostgum's
GSView (http://www.ghostgum.com.au) or the widely-available command-line
utilities ps2epsi and epstool, can be used to do this. Let us briefly consider what this
means and why it is desirable. The graphics in an EPS file are specified in terms of
coordinates on an imaginary piece of standard-sized paper. These graphics usually only
fill a portion of the coordinate space, leaving the rest as white space. If you wish to
include the EPS file as a figure in a word processor or LATEX document, it is necessary to
specify to the word processor what portion of the page contains the actual graphics, so
that the software can crop tightly around the graphics. This is accomplished by adding a
"bounding box" definition to the file. The Mathematica Export command sets the
bounding box to encompass the full figure area you defined with PlotRange. But this

LevelScheme user's guide 58

Version 3.30

generally leaves some white space around the actual drawing elements, which you can
trim off by defining a tighter bounding box.

Under versions of Mathematica earlier than 4.2.1, the procedure for creating an
EPS file is more involved. Mathematica makes extensive use of special symbol fonts,
even for such basic text characters as parentheses and brackets, and most other software
does not know how to draw the characters in these fonts. While the Export command
under later versions "embeds" these special Mathematica fonts in the EPS file, the
Export command under earlier versions does not, resulting in gibberish or missing
text. There are at least two solutions to this problem. One is to use the emmathfnt
package (http://library.wolfram.com/infocenter/MathSource/628)
to add the necessary fonts to the EPS file created by Export. The other solution,
available under the Microsoft Windows operating system at least, is to avoid the
Export command entirely, instead "printing" the figure to a file using an appropriate
PostScript printer driver. It is first necessary to install the printer driver software for a
color PostScript printer, such as the HP Color LaserJet. (There is no need to have any
printer actually physically attached to the computer.)

For Windows XP: From the task bar, select Start»"Control Panel". Open the "Printers
and Faxes" window. Select "Add Printer". Following the prompts, select "Local
printer" and deselect the check box for "Automatically detect and install". Choose
"FILE:" as the port to print to. For the model of printer, select "Hewlett Packard HP
Color LaserJet PS". For the printer name, enter some descriptive name, such as "EPS
file". Select "No" when asked whether or not to make this the default printer or to print
a test page. Select "Finish". Now, back in the "Printers and Faxes" window, find this
new printer in the list of printers. Select (highlight) it and, under the "File" menu,
choose "Properties..." to modify its properties. Under the "Device Settings" tab, set
both "Minimum font size to download as outline" and "Maximum font size to
download as bitmap" to 0. Select "OK". Open the "Properties..." window for this
printer again. Under the "General" tab, click "Printing Preferences...". Under the
"Layout" tab, click "Advanced..." and, in the list of options, under "Document
Options", find "PostScript Options". You may need to click the "+" sign to the left to
expand this list of options. Set "PostScript Output Option" to "Encapsulated PostScript
(EPS)", set "TrueType Font Download Option" to "Outline", and set "PostScript
Language Level" to "1". (To avoid problems with washed-out colors, you may also
wish to find the "Graphic" option "ICM Method" and set it to "ICM Disabled".) Select
"OK".

LevelScheme user's guide 59

Version 3.30

Now, whenever you are ready to create an EPS file of one of your level schemes in
Mathematica, first turn off Mathematica's printing of page headers. (Under
File»"Printing settings"»"Headers and footers", check the box by "No header on first
page" and uncheck the box by "Include line".) You only need to do this once for the
notebook, and these settings will be saved with the notebook. Select the cell containing
the level scheme you wish to print by clicking with the mouse on the blue bracket to its
right. Choose File»"Print selection", select the EPS "printer" you just installed, and
press "OK". A window should pop up prompting you for the name you would like for
the EPS file.

Under some operating systems, including Microsoft Windows, it is also possible
to simply "cut and paste" graphics from Mathematica into other applications via the
windowing system clipboard. But beware that any text in the figure will fail to display
properly if the resulting file is ever used on a computer which does not have the Mathe-
matica fonts installed.

Appendices

Appendix A: Transition autospacing for decay schemes

Some special definitions are provided to facilitate the drawing of decay schemes
in the classic style for such schemes. Such schemes consist of a stacked series of levels,
connected by an array of vertical arrows which are equally spaced horizontally and
grouped by starting level.

AutoLevelInit@
x0, dintra, dinterD

Initializes autospacing, specifying horizontal coordinate x0
for the first transition, spacing dintra between transitions from the same level,
and spacing dinter between groups of transitions from different levels

AutoLevel@ level1D Specifies that the following transitions originate from level level1

AutoTrans@ level2D Draws a transition to level2 ; any options are passed on to Trans

Transition autospacing commands.

The following example illustrates the use of the AutoLevelInit,
AutoLevel, and AutoTrans commands. Negative spacings are specified in
AutoInit to draw the transitions successively from right to left. It is usually desirable
to set the option BackgroundT→Automatic for Trans, to create a white-out box
behind each label, blocking out any higher-lying levels behind the label. If this box also

LevelScheme user's guide 60

Version 3.30

cuts into the level line of the level from which the transition originates, the label can be
nudged upwards with NudgeT.

SetOptions[Lev,Thickness→2,LabR→Automatic,WingTipWidth→25,
 Margin→0],
Lev[lev0,0,1,"0",LabL→LabelJP[0,+1]],
Lev[lev121,0,1,"121",LabL→LabelJP[2,+1]],
Lev[lev366,0,1,"366",LabL→LabelJP[4,+1]],
Lev[lev684,0,1,"684",LabL→LabelJP[0,+1],WingHeight→-5],
Lev[lev706,0,1,"706",LabL→LabelJP[6,+1],WingHeight→+5],
Lev[lev810,0,1,"810",LabL→LabelJP[2,+1]],
Lev[lev963,0,1,"963",LabL→LabelJP[1,-1]],

SetOptions[Trans,BackgroundT→Automatic,NudgeT→2],
AutoLevelInit[0.85,-0.04,-0.08],
AutoLevel[lev121],
AutoTrans[lev0,LabT→"121"],
AutoLevel[lev366],
AutoTrans[lev121,LabT→"244"],
AutoLevel[lev684],
AutoTrans[lev121,LabT→"562"],
AutoTrans[lev0,LabT→"684",LineColor→Red,Dashing→Automatic],
AutoLevel[lev706],
AutoTrans[lev366,LabT→"340"],
AutoLevel[lev810],
AutoTrans[lev684,LabT→"125",LineColor→Red],
AutoTrans[lev366,LabT→"443"],
AutoTrans[lev121,LabT→"688"],
AutoTrans[lev0,LabT→"810"],
AutoLevel[lev963],
AutoTrans[lev810,LabT→"152",LineColor→Blue],
AutoTrans[lev684,LabT→"278",LineColor→Blue],
AutoTrans[lev121,LabT→"841",LineColor→Blue],
AutoTrans[lev0,LabT→"963",LineColor→Blue]

0+ 0

2+ 121

4+ 366

0+ 684
6+ 706
2+ 810

1- 963

121

442

265
486

043

521
344
886
018

251
872
148
369

Example of transition autospacing.

LevelScheme user's guide 61

Version 3.30

Appendix B: Notes for advanced users

Line dashing: The option Dashing allows any combination of dash lengths to be speci-
fied, but the gap between them is automatically calculated. The following options allow
control over the gap length. If different gap lengths are desired between successive
dashes (rarely needed), this may also be accomplished, by giving the option Dashing→
AbsoluteDashing[…] (see the Mathematica help for AbsoluteDashing).

option name default value

DashingGap Automatic The length of the gap between dashes, in printer' s points ;
if Automatic the length is determined from
the average gap length specified with Dashing

DashingCorrection True Whether or not the dash lengths and
gap lengths should be corrected for the finite

pen width in PostScript graphics Hrecommended
to prevent the gaps from filling in for thick linesL

Advanced dashing options.

Coordinate conversion: The function ConvertCoordinate converts coordinates
between the five LevelScheme coordinate systems. Convert-
Coordinate[system,newsystem,type,{x,y}] converts a point, while Convert-
Coordinate[system,newsystem,type,x,axis] converts a single coordinate, either x
or y depending upon whether axis is 1 or 2. The coordinate systems are specified as
AbsoluteCoords, CanvasCoords, RegionCoords, ScaledCoords, or User-
Coords. The conversion type (C or D) indicates whether the conversion is of a coordi-
nate (scale and offset) or of a displacement (scale only). Coordinate conversion can be
of use in carrying out positioning tasks involving adjustments in printer's points. In
multipanel plots, it can be convenient to convert the coordinates of a point from user
coordinates to canvas coordinates and save the result for later use in drawing annota-
tions, such as arrows, spanning multiple panels.

Functions for converting coordinate ranges or regions, Convert-
Range[system,newsystem,type,{x1,x2},axis] and Convert-
Region[system,newsystem,type,{{x1,x2},{y1,y2}}], are also available.

Point saving and retrieval: SavePoint[ID,{x,y}] or SavePoint[-
ID,{x,y},system] saves the location of a point for later retrieval with Get-
Point[ID] or GetPoint[ID,system]. The coordinates are automatically converted

LevelScheme user's guide 62

Version 3.30

at the time of retrieval to whatever coordinate system is currently active. This is espe-
cially useful for drawing annotations (e.g., arrows) which span different panels of a plot
with different coordinate system definitions.

Levels: The ID argument is optional (however, it is good practice to always habitually
define IDs for levels, to avoid having to go back and haphazardly add IDs when they are
needed to specify transitions, connectors, etc.). In addition to left, center, and right
labels, top and bottom labels can be specified as well (these are only rarely useful, as
they are usually redundant to the center label).

The symbol LastLevel evaluates to the ID of the most recently defined level,
and the energy of a level can be retrieved with LevelEnergy[level].

The energy of a level may be adjusted upwards or downwards with the option
EnergyNudge. The default energy label formatting may be overridden by providing a
function as the value for the option EnergyLabelFunction.

Panels: PanelLetter[] returns a string giving the panel letter of the current panel.
It accepts the panel letter formatting options listed earlier for Multipanel.

In a multipanel plot, additional options X/YMarginSizes may be used to
specify the widths of gaps to the left of the leftmost panel, to the right of the rightmost
panel, above the topmost panel, or below the bottommost panel, on the same relative
scale as used in the X/YPanelSizes and X/YGapSizes options. This is occasion-
ally useful for layout purposes.

Figure command: The BlockOptions option prevents changes to options made
inside the scheme from being permanent global changes. For instance, you might use
BlockOptions→{Plot} if you are making extensive use of Plot in drawing a
figure and which to temporarily reset its default options.

BlockOptions 8< Additional symbols,
beyond the usual LevelScheme drawing objects,
for which the option values should be dynamically scoped

DisplayFunction $DisplayFunction See Mathematica documentation

ColorOutput Automatic See Mathematica documentation

Advanced options for the Figure command.

ViewPort: The ViewPort command accepts the option AxisScaling→{
xs,ys,zs}, consisting of relative scales for the three axes, in lieu of BoxRatios, to

LevelScheme user's guide 63

Version 3.30

automatically calculate the ratios from PlotRange. It also accepts an option Euler-
Rotation and rotates the contents accordingly.

Graphics utilities: If a Mathematica Graphics object contains just a single curve, as
is often the case for the output of Plot and other Mathematica plotting and geometry
routines, the GrabPoints function may be used to extract a list of the points from
which this curve is constructed. (The ExtractLines function can be used to extract
a list of curves from more complicated plots.) These points can be used as the argument
to SchemeLine or SchemePolygon. This allows greater control of the appearance
of the plot than is available with RawGraphics, since it allows the curve to be used as
the boundary of a filled region or to be maniplated in various ways.

GrabPoints@ graphicsD Extracts a list of points from a simple enough
graphics object Htypically the output of a plotting routineL

ExtractLines@ graphicsD Extracts a list of lines from a graphics object

Command for manipulating graphics.

Appendix C: Known problems under specific Mathematica versions

Mathematica 4 and 5 for Microsoft Windows: At some point in a Mathematica ses-
sion, label text may, unpredictably, begin to appear with irregular spacing between char-
acters and with vastly oversized delimiters such as parenthesis. To remedy this, it is
necessary to exit and restart the Mathematica front end, not just the kernel.

Mathematica 5 for Linux or Macintosh OS X: On screen, slanted text labels are dis-
played with the individual characters oriented horizontally, instead of being tilted to be
aligned with the label as a whole. The exported EPS output is, however, correct.

© Copyright 2007, Mark A. Caprio.

LevelScheme user's guide 64

Version 3.30

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

