
InheritOptions package
Mark A. Caprio, Department of Physics, University of Notre Dame

Version 2.0 (June 22, 2011)

Introduction

Often it is necessary to define several related functions which accept similar sets of options. (For instance, many of
the Mathematica plotting functions accept similar sets of options.) It is useful for such related functions to be able to share
the default values for their options, so that a default value set for one can affect all the others as well. The InheritOptions
package provides a framework for this, as well as for much more sophisticated possibilities.

The InheritOptions package applies the concept of "inheritance", one of the foundations of object oriented program-
ming, to Mathematica's option system. Inheritance is the process by which one object, known as the "child" object, can be
automatically assigned some of the properties of another type of object, known as the "parent" object. (For instance, in
object oriented programming, the objects are usually data structures, and the child data structure automatically contains
some or all of the data fields defined for the parent.)

The InheritOptions package implements a form of inheritance in which a child symbol inherits the default values of
options from a parent symbol. Recall that, under the basic Mathematica option system, the value for an option for a symbol
can be explcitly specified as an argument (e.g., Plot[args,FrameTrue]), but that if no value is specified the value is
taken from the list of rules Options[symbol] which gives the default values. Under the inheritance system set up by the
InheritOptions package, there is another possibility. If the value of an option for symbol child given as Inherited, then
the value used for it can be obtained from the list of defaults Options[parent] for a parent symbol parent.

Under the InheritOptions package, one child symbol can inherit different options from different parent symbols
("multiple inheritance"), and an arbitrary number of generations of inheritance are possible (a child inheriting an option
from a parent which in turn inherits the option from a grandparent, etc.). The code implementing inheritance provides
validation of the options, including checking for unknown option names in the list of options given to a symbol.

The package also provides several general option processing utilities, not directly related to inheritance, including
utilities to sort and combine lists of options.

How the default options for functions are defined

First one or more "parent" symbols (functions) must be defined which do not inherit any options. Then, other
"child" symbols can be defined, inheriting their options from these parents.

DefineOptions symbol , option1  value1, ...  Defines the options for symbol, with no inherited options;
but all necessary setup is carried out for symbol to later be used as a parent symbol

Option definition for a function with no parents.

The options for the parent must be defined using DefineOptions, as shown above. To define the options for
symbol, this DefineOptions must be given a list of rules for the default values of symbol's options. This list serves two
slightly distinct purposes: it enumerates the names of the valid options for symbol, and it defines their default values.
DefineOptions defines Options[symbol] to be the given list of rules, as usual under the Mathematica option

InheritOptions package 1

system. But is also defines a another set of rules, OptionRealizationRules[symbol], used later in the option
inheritance process as discussed below.

A classic example from object oriented programming is to define an object representing a geometric point, from
which other geometric objects are derived as children. A point is characterized by its coordinates, which we choose here so
that the point is by default at the origin.

DefineOptions[GeomPoint,{Coordinates{0.,0.}}]

This results in the definition of Options[GeomPoint] as

{Coordinates{0.,0.}}

DefineOptions symbol , parent , All, ... , newoption1  newvalue1, ...  Defines the options for symbol, inheriting all the options of parent

DefineOptions symbol , parent ,  option1, ... , ... , newoption1  newvalue1, ...  Defines the options for symbol, inheriting only some of the options of parent

DefineOptions symbol , parent ,  option1 
value1, ... , ... , newoption1  newvalue1, ... 

Defines the options for symbol, inheriting only some of the options of parent,
and overriding the default value for option1 to something other than Inherited

DefineOptions symbol , parent ,  option1 
value1, ... , All, ... , newoption1  newvalue1, ... 

Defines the options for symbol, inheriting all of the options of parent,
but overriding the default value for option1 to something other than Inherited

Option definition for child function.

Now we consider defining the options for a child symbol. The simplest possible case is that the child symbol
inherits all the options which are defined for the parent, as in the first case in the box above. For our illustration we define
a circle as having coordinates (inherited from the point) and also a radius, with unit radius as the default. The code

DefineOptions[GeomCircle,{GeomPoint,All},{Radius1}]

results in the definition of Options[GeomCircle] as

{CoordinatesInherited,Radius1}

It also produces a definition for OptionRealizationRules[GeomCircle], which contains the information neces-
sary for the option Coordinates to be inherited from GeomPoint when its value is given as Inherited.

Alternatively, the second syntax in the box above may be used. In this case, only some options, explicitly enumer-
ated, are inherited from the parent. For our geometric example, we could have equivalently defined the options for the
circle with

DefineOptions[GeomCircle,{GeomPoint,{Coordinates}},{Radius1}]

Even more flexibility is provided by the third syntax. A default value other than Inherited can be specified for
the inherited option. But the information necessary for inheritance is still stored in OptionRealizationRules. Thus,
if the value Inherited ever is encountered for the option (perhaps if the user later sets the default value to Inherited
with SetOptions, or if the user explicitly gives the value Inherited as an argument), the value will be inherited from
the parent. For the GeomCircle example, we could have chosen circles to by default appear at some specific location

InheritOptions package 2

other than the origin but left open the possibility of inheriting the coordinates from GeomPoint through an explicit
specification of Inherited. This would be accomplished by

DefineOptions[GeomCircle,{GeomPoint,{Coordinates{1.,1.}}},{Radius1}]

which defines Options[GeomCircle] as

{Coordinates{1.,1.},Radius1}

Note that a symbol may be defined to inherit some options from one parent and some from another, a situation
referred to a "multiple inheritance". As an example, consider a function BoxedText, producing text framed in a box. It
could be derived from two simpler functions, one for producing a colored box and one for drawing text, in which case it
would require the options appropriate to both.

DefineOptions[ColoredBox,{FillColorRed,BorderColorBlack}];
DefineOptions[PlainText,{FontFamily->"Times",FontColorBlack}];
DefineOptions[BoxedText,{ColoredBox,All},{PlainText,All},{}];

This defines Options[BoxedText] as

{BorderColorInherited,FillColorInherited,FontColorInherited,FontFamily
Inherited}

There is no limit on the number of parents one child may have.

Review: How functions using options are conventionally defined in Mathematica

Before we consider how to implement functions which make use of inherited options, let us review how options are
conventionally used within a function in Mathematica, without inheritance. Option values given explicitly to a function as
arguments override the default values in Options[symbol]. Most Mathematica functions are very tolerant about how
these option arguments are given: the options may be enclosed in lists or even nested sublists. An example of eccentric but
acceptable nesting would be Plot[args,PlotPoints1000,{{AxesFalse,{FrameTrue},PlotPoints
33}}]. If several rules for the same option are given, the leftmost rule applies.

The first step a function must carry out is to construct a complete list of rules giving the values to be used for all the
options. For example, an ordinary Mathematica function analogous to the circle example above (but without inheritance)
could be implemented as

Options[ConventionalCircle]={Coordinates{0.,0.},Radius1};
ConventionalCircle[Opts___?OptionQ]:=Module[
 {FullOpts=Flatten[{Opts,Options[ConventionalCircle]}]},
 Circle[Coordinates/.FullOpts,Radius/.FullOpts]
];

Here Flatten creates a flattened list containing all the rules given for the options: first those given explicitly as argu-
ments (Opts), then the default rules (Options[ConventionalCircle]). Since the rules given in Opts appear first
in the list, they take precedence over the defaults when /. is used to extract the values. Some example inputs and outputs
are

ConventionalCircle
Circle0., 0., 1
ConventionalCircleRadius  2
Circle0., 0., 2

InheritOptions package 3

How functions using inherited options are defined

RealizeOptions
symbol, option rules Produces a finalized list of values to be used for all

the options for symbol , inherited from parents as appropriate

Option realization function for inherited options.

To write a function which makes use of inherited options, only one modification to the conventional approach is
necessary. The function RealizeOptions must be used instead of Flatten to obtain the final list of rules for the
options. RealizeOptions first combines any rules for options given explicitly as arguments with the list of default
options, much as above. (In fact, it is "tidier", in that it also keeps only the first, highest-precedence rule for each option,
yielding a slightly more compact list of options.) If the rule for any of the options in this list gives the option value as
Inherited, the appropriate parent symbol's options are checked for the value. And if this value is Inherited, the
appropriate grandparent is checked, etc.

RealizeOptions performs two validity checks on the option rules it is given. If a value Inherited is
encountered for an option which is not inheritable, at any stage of looking at parent, grandparent, etc., values for an option,
an error message is generated. Also, if a rule is specified for anything which is not a known option (as defined with
DefineOptions) for the symbol, an error message is generated. It is thus useful to use RealizeOptions in the
implementation of any function defined using DefineOptions, even if that function does not inherit any options, to
obtain the benefit of this option validation.

As an example, consider the full implementation of the circle example discussed above.

DefineOptions[GeomPoint,{Coordinates{0.,0.}}];
DefineOptions[GeomCircle,{GeomPoint,All},{Radius1}];
GeomCircle[Opts___?OptionQ]:=Module[
 {FullOpts=RealizeOptions[GeomCircle,Opts]},
 Circle[Coordinates/.FullOpts,Radius/.FullOpts]
];

The following inputs and outputs show the list of option values constructed by RealizeOptions

OptionsGeomCircle
RealizeOptionsGeomCircle
RealizeOptionsGeomCircle, Coordinates  5.1, 3.4Coordinates  Inherited, Radius  1Coordinates  0., 0., Radius  1Coordinates  5.1, 3.4, Radius  1

and the results for the function as a whole

GeomCircle
Circle0., 0., 1
GeomCircleCoordinates  5.1, 3.4
Circle5.1, 3.4, 1

InheritOptions package 4

General option processing utilities

KnownOptions symbol Returns a sorted list of the known option names for symbol,
as defined in Options symbol

OptionsSort options Flattens a set of option specifications and sorts them by option name;
order is preserved for rules for the same option

OptionsUnion options Flattens a set of option specifications and sorts them by option name;
only the rule which was originally leftmosthighest precedence for each option in preserved

DuplicatedOptions options Returns a list of all options which are
specified more than once in a set of option specifications

FlatOptionListQ x Returns True if x is a flat list of option rules;
this is a more stringent test than Mathematica ' s OptionQ;
the pattern accepted for an option rule is _Symbol  _ _Symbol  _

Option list manipulation utilities.

KnownOption symbol, option Returns True if option is a known option for symbol,
as defined in Options symbol

Utility function for testing definition of an individual option.

Technical notes

Notes on defining the options

The option default value rules given to DefineOptions, either for overriding the default values of inherited options or
in the list of new options, may be either of the type Rule () or of the type RuleDelayed ().

An option cannot be defined more than once for the same symbol. Thus, an error will result if the same option is inherited
from more than one parent, or listed more than once in the list of options to be inherited from a single parent, listed both as
inherited and in the new option list, or listed more than once in the new option list.

The list of new options given to DefineOptions can have nested sublists (which will just be flattened out), but the lists
of inherited options must be flat.

The list of option value rules stored in Options[symbol] is sorted "canonically" (i.e., alphabetically) by option name.

OptionRealizationRules[symbol] is associated with symbol as an upvalue. It is stored either as a list of rules or as
a dispatch table (Dispatch), whichever is more efficient.

Notes on realizing the options

The value Inherited for an option may be specified with Rule or RuleDelayed, interchangeably.

The steps carried out by RealizeOptions are as follows. First, to combine the explicit options with the default option
list, RealizeOptions uses OptionsUnion, in the process removing duplicate values. It then applies the rules
contained in OptionRealizationRules[symbol] to the unioned list of options. Applying OptionRealiza-
tionRules[symbol] replaces any option specification of the form optionØInherited or optionßInherited, for a
known and inheritable option, with the rule for option given in Options[parent], where parent is the appropriate parent
symbol. If that rule also gives the value Inherited, OptionRealizationRules[parent] is applied, ad nauseum.

InheritOptions package 5

When RealizeOptions applies OptionRealizationRules[symbol], this has the effect of applying error trap-
ping rules contained in OptionRealizationRules[symbol]. If a rule of the form optionØInherited or optionß
Inherited is encountered for an option which is known but not inheritable, the global error handler
$UninheritableOption is called with the symbol name, option name, and full rule as arguments. If a rule is encoun-
tered for an unknown option, the global error handler $UnknownOption is called, with the same set of arguments. The
default error handlers generate a warning message and return the rule unchanged, but the user can define alternate error
handlers. The validity checks in OptionRealizationRules[symbol]can be completely omitted by specifying the
options TrapUninheritableOptions and TrapUnknownOptions as False when OptionRealiza-
tionRules[symbol]is first created with DefineOptions.

Further resources

Examples of Mathematica code which rely heavily upon the InheritOptions inheritance scheme are the Lev-
elScheme [M. A. Caprio, Comput. Phys. Commun. 171, 107 (2005)] and SciDraw scientific figure preparation systems.

Mathematica version

This package requires Mathematica version 6 or above.

© Copyright 2011, Mark A. Caprio.

InheritOptions package 6

