
Y Ν

-0.5

0.0

0.5

1.0

0 5 10 15 20

J Ν
HaL

-0.5

0.0

0.5

1.0

0 5 10 15 20
x

x

y

mΒ

mΑ

R Β

R Α

R

r e

R c.m
.

ÈYHre;RΑ,RΒLÈ2

HbL

0.0

0.5

1.0

1.5

2.0

0 1 2 3

Valence
shell

8 Be
12 C

16 O

20 Ne

24 M
g 12 C J=0HcL

100

102

104

106

108

1010

1012

D
im

en
si

on

0 2 4 6 8 10 12 14 16 18 20
Excitation quanta

0

20

40

60

80

100

C
ou

nt
s
H1

03
L

210 220 230 240

HdL

0

200

400

600

800

1000

1200

1400

C
ou

nt
s
H1

03 L

0 100 200 300 400 500 600
Channel

0+ 0

2+ 335 27 ps

0+ 661
4+ 747 6 ps

TIMING

GATE

0+ 0

2+ 335 27 ps

0+ 661 ΤH02
+L

4+ 747

TIMING

GATE

SciDraw
Publication-quality scientific figures with Mathematica

A user's guide and reference manual

Mark A. Caprio,Department of Physics, University of Notre Dame

Version 0.0.0 (November 24, 2013)

Copyright c©2013 by Mark A. Caprio

Permission is granted to copy, distribute and/or modify the code of the package under the terms of the GNU
Public License, Version 2, or any later version published by the Free Software Foundation. A copy of the
license is included in the section entitled GNU Public License.

Permission is granted to copy, distribute and/or modify the documentation under the terms of the GNU Free
Documentation License, Version 1.2, or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in
the section entitled GNU Free Documentation License.

Contents

I User’s guide 1

1 Introduction 2
1.1 What is SciDraw? . 2
1.2 Design philosophy of SciDraw . 2
1.3 Using this user’s guide and reference manual . 3
1.4 Notation and conventions . 3
1.5 Further information and updates . 4
1.6 Acknowledgement of use . 4

2 Installation 5

3 Basic concepts by tutorial 9
3.1 Tutorial 1: Getting started with figures and panels . 9

3.1.1 Problem statement . 9
3.1.2 Setting up the “canvas” . 10
3.1.3 Setting up the main panel frame . 11
3.1.4 Interlude: Panels and coordinates . 14
3.1.5 Interlude: Typesetting in Mathematica . 15
3.1.6 Including a plot from Mathematica . 17
3.1.7 Adding some annotations: Labels and rules . 18
3.1.8 Setting up the inset panel . 21
3.1.9 The final figure . 22
3.1.10 Supplement: Inserting three-dimensional or other Mathematica graphics 24

3.2 Tutorial 2: Using objects, anchors, and styles . 28
3.2.1 Problem statement . 28
3.2.2 Drawing the objects . 28
3.2.3 Interlude: Time to meet the family . 31
3.2.4 Attaching text labels . 32
3.2.5 Interlude: Attached labels and anchors [STUB] 34
3.2.6 Neatening up the geometry using anchors [STUB] 35
3.2.7 Interlude: Styles [STUB] . 35
3.2.8 The final figure . 35

3.3 Tutorial 3: Getting started with data plots and legends [STUB] 36

4 Topical discussions 37
4.1 Basic drawing objects [STUB] . 37
4.2 Multipanel figures [STUB] . 37
4.3 Formatting text for labels [STUB] . 37
4.4 Generating EPS/PDF output for publication [STUB] . 37
4.5 Level schemes . 37

4.5.1 Note for LevelScheme users . 37
4.5.2 Levels, extensions, and connectors . 38
4.5.3 Transition arrows . 41

i

II Reference manual 47

5 Setting up the canvas with Figure 48

6 Objects 50

7 Arguments involving coordinates 51
7.1 Points and anchors . 51

7.1.1 Points . 51
7.1.2 Anchors . 52
7.1.3 Calculating new points or anchors . 54

7.2 Curves . 55
7.2.1 Points on curves . 55
7.2.2 Curves from graphics . 57

7.3 Relative positions within a rectangle (i.e., text offsets) . 57
7.4 Rectangular regions . 58

8 Options for figure objects 60
8.1 FigObject: Common default options . 60

8.1.1 Overall appearance . 60
8.1.2 Outline appearance . 61
8.1.3 Fill appearance . 62
8.1.4 Point appearance . 63
8.1.5 Text appearance . 63
8.1.6 Text font characteristics . 64
8.1.7 Text background and frame . 64
8.1.8 Text positioning . 65
8.1.9 Layering . 66

8.2 Attached label options . 67

9 Styles and advanced option control 68
9.1 Defining styles . 68
9.2 Using styles . 69
9.3 Overriding options by object name . 70
9.4 Scoping changes to default options . 70

10 Panels 72
10.1 FigurePanel basics . 72
10.2 Multipanel arrays . 80
10.3 Iterated generation of panels . 86
10.4 FigAxis . 89
10.5 WithOrigin . 91
10.6 FigureGroup . 91

11 Basic drawing shapes 92
11.1 FigLine . 92
11.2 FigPolygon . 94
11.3 FigArrow . 94
11.4 FigRectangle and FigCircle . 97
11.5 FigPoint . 103

ii

11.6 Splines . 103

12 Annotations 105
12.1 FigLabel . 105
12.2 FigRule . 106
12.3 FigBracket . 106

13 Graphics inclusion 108
13.1 FigGraphics . 108
13.2 FigInset . 108

14 Level schemes 110
14.1 Lev . 110
14.2 ExtensionLine . 112
14.3 Connector . 112
14.4 BandLabel . 113
14.5 Trans . 113
14.6 Decay scheme generation . 115

15 Data plotting 116
15.1 DataPlot . 116

15.1.1 Data sets . 116
15.1.2 Data plot appearance . 119
15.1.3 Defining new axis scales, symbol shapes, and curve shapes 122

15.2 DataLegend . 123
15.3 Data manipulation utilities . 125

A1 Known issues 127

A2 Licenses 128

iii

Part I

User’s guide

1

1 Introduction

1.1 What is SciDraw?
SciDraw is a system for preparing publication-quality scientific figures with Mathematica. SciDraw provides
both a framework for assembling figures and tools for generating their content. In general, SciDraw helps
with generating figures involving mathematical plots, data plots, and diagrams.

The structural framework includes:
– Generation of panels for multi-panel and inset figures,
– Customizable tick marks,
– Style definitions, for uniformly controlling formatting and appearance across multiple figures,
– Graphical objects for annotating figures with text labels, axes, etc.

Any graphics (plots, images, etc.) which you can produce in Mathematica (or import into Mathematica)
can, with occasional restrictions, easily be included in a SciDraw figure.

Beyond these structural elements, SciDraw then provides an object oriented drawing system which
makes many hard-to-draw scientific diagrams comparatively easy to generate. The object oriented approach,
plus the use of styles, allows extensive manual fine tuning of the appearance of text and graphics, while also
helping ensure uniformity across figures. It also greatly simplifies the arrangement of objects (and text
labels) in relation to each other — especially when it comes to attaching text labels to objects (shapes, data
curves, arrows, etc.) in the figure, as well as connecting these shapes to each other.

SciDraw also provides data plotting and legend generation capabilities complementary to those built
into Mathematica. The scope of these is relatively focused — on making standard two-dimensional data
plots, but making them well.

SciDraw’s origins lay in the preparation of high-quality level schemes, or level energy diagrams, as used
in nuclear, atomic, molecular, and hadronic physics — SciDraw is the successor to LevelScheme [Comput.
Phys. Commun. 171, 107 (2005)] and retains the capabilities of this package. SciDraw automates many
of the tedious aspects of preparing a level scheme, such as positioning transition arrows between levels or
placing text labels alongside the objects they label. It also includes specialized features for creating certain
common types of decay schemes encountered in nuclear physics.

1.2 Design philosophy of SciDraw
A few basic principles have guided the design of SciDraw. One is to have a system whereby even major
formatting changes to a figure can be made relatively quickly. Objects in a figure (such as curves, arrows,
text labels, or drawing shapes) are attached to each other, so that if one object is moved the rest follow
automatically. For instance, in a level energy diagram, transition arrows are attached to levels, labels attached
to levels and to transitions, etc. Another principle is for objects to have reasonable default properties,
so that a figure can initially be drawn with minimal attention to formatting features. But the user must
then have near-complete flexibility in fine tuning formatting details to accomodate whatever special cases
might arise. This is accomplished by making the more sophisticated formatting features accessible through
various optional arguments or options, for which the user can specify values. The user can specify the values
of options for individual objects, or the user can set new default values of options for the whole figure to
control the formatting of many objects at once. Especially powerful formatting control is provided through
the use of styles, which allow common formatting choices to be made (and adjusted) across many figures, or
for specific sets of objects within a figure, all at once. Finally, attention has been paid to providing a uniform
user interface for all drawing objects, based upon a consistent notation for the specification of properties for
the outline, fill, and text labels of objects.

2

1.3 Using this user’s guide and reference manual
The user’s guide is still under construction. There should be enough to to get you started,
especially if you are brave of heart. The reference manual is complete and can, together
with the example notebooks, fill in most of the missing details.

The user’s guide is meant to get you started quickly, to familiarize you with the basic tools at your
disposal, and to help you absorb the basic principles at play in SciDraw. You will want to start learning
SciDraw by working through the tutorials (Sec. 3). The tutorials introduce the essential concepts of SciDraw,
without attempting to encyclopedically cover all the details. These are fully-worked examples which lead
you, step-by-step, through the thought process which goes into drawing a figure with SciDraw. After the
tutorials, you will find more focused topical discussions delving into matters such as multipanel plotting and
level schemes (Sec. 4).

The reference manual provides a comprehensive reference to the SciDraw interface, organized by topic.
You will be well-served to familiarize yourself with the reference manual at the same time as you go through
the user’s guide. You will find convenient reference tables and further details there.

Just as important are the example notebooks which come along with SciDraw. These include code for
the examples in the user’s guide, and many additional examples as well. Users often find these the best way
of learning how to work with SciDraw.

The documentation for the CustomTicks package is found in a separate file
CustomTicksGuide.pdf, which also comes with SciDraw.

The old LevelScheme user’s guide (Version 3.53) is also included with this distribution, in
LevelSchemeGuide.pdf. While the present guide is still under construction, there are a couple of
special topics where you will still be referred to the LevelScheme guide.

Prerequisites. It is assumed that you have some basic experience starting Mathematica, evaluating cells,
and opening and saving notebook files. You should be comfortable with using the Mathematica Plot
or ListPlot functions to generate some basic graphics, and you should have a working knowledge
of the more common options for two-dimensional graphics in Mathematica, such as PlotRange and
FrameLabel.

Links to help. In general, this guide is not an introduction to Mathematica, but and effort is made to
give pointers to relevant Mathematica documentation along the way. These are given in sans serif type. For
instance, if this guide tells you to see tutorial/VisualizationAndGraphicsOverview for more information,
you can open the Mathematica help browser and enter this link into the search bar. In fact, you will probably
want to read this — it is the Mathematica Virtual Book chapter on “Visualization and Graphics” — to get an
introduction to graphics in Mathematica, if you have not done so already.

1.4 Notation and conventions
Many dimensions (such as line thicknesses or text position adjustments) will be specified in “printer’s
points”, where 1pt = 1/72inch or 0.35mm. These are convenient and customary units to use for controlling
text and graphics. A thin line is about 1pt thick, and characters of normal text are ∼ 10pt high.

The Mathematica option symbol (“→”) which appears in example input in this guide is entered from the
keyboard as a hyphen followed by a greater-than sign (“->”). The double bracket characters (“[[· · ·]]”) which
appear in example input in this guide are entered from the keyboard as Esc -[-[- Esc and Esc -]-]-
Esc , respectively.

3

1.5 Further information and updates
Further information and updates to SciDraw may be obtained through the SciDraw home page:

http://scidraw.nd.edu

1.6 Acknowledgement of use
If you use SciDraw to prepare the figures for your publication, an acknowledgement is always welcome. For
example, you might include a statement such as the following in the “Acknowledgements” section:

The figures for this article have been created using the SciDraw scientific fig-
ure preparation system [M. A. Caprio, Comput. Phys. Commun. 171, 107 (2005),
http://scidraw.nd.edu].

Feel free to modify this statement as appropriate, e.g., changing “the figures for this article” to “Figure
5”. (Acknowledging SciDraw in individual figure captions is not recommended, since a full acknowledge-
ment is cumbersome there, and simply referencing SciDraw in a caption could be mistaken to mean that the
figure data is taken from SciDraw or the Computer Physics Communications paper.)

Note: The Computer Physics Communications article indicated here is the old paper on LevelScheme,
the predecessor software to SciDraw — hopefully an updated reference will be available someday, so please
check back.

4

2 Installation
DON’T PANIC! Installation is actually reasonably straightforward. These instructions are only as long
as they are since they err on the side of completeness.

Requirements: This version of SciDraw requires Mathematica 8 or higher. It has been tested
under Mathematica 9.

Distribution contents. The SciDraw package is distributed as a ZIP archive. To start with, you need
to extract the files from this ZIP archive.1 You will find that the extracted files are in two directories (i.e.,
folders):

The directory packages contains the Mathematica packages which make up SciDraw. These are in
several subdirectories, named SciDraw, CustomTicks, BlockOptions, etc. In order to be able to
load SciDraw, you will need to move these package subdirectories to a location where Mathematica can find
them, as discussed in detail below.

The directory doc contains the documentation (including this guide and a separate guide for the
CustomTicks package) and several notebooks containing example SciDraw figures. You may move
the documentation to any convenient location, so you can easily find and refer to it later.

Background on packages. If you are not yet familiar with the idea of “packages” in Mathematica, and
how to load them, now would be a good time to learn the basics from tutorial/MathematicaPackages. You
might also find it helpful to be familiar with the information in tutorial/NamingAndFindingFiles.

Installing the package files. You need to decide upon a suitable place in your directory structure where
you would like to keep package files — including SciDraw, and perhaps other packages as well. For ex-
ample, you might create a directory named mathematica in your home directory, to contain all your
Mathematica packages, documentation, etc. For instance, on a Microsoft Windows 7 system, this would
have a name like

C:\Users\mcaprio\mathematica

on an Apple Macintosh OS X system

/Users/mcaprio/mathematica

or, on a Linux system,

/home/mcaprio/mathematica

Then, it is important to realize that, as far as Mathematica is concerned, SciDraw is actually a
collection of packages — contained in the various subdirectories named SciDraw, CustomTicks,
BlockOptions, etc. which we mentioned above. You need to move those subdirectories into your new
Mathematica package directory,2 e.g., for the Windows system, the subdirectories would now be

C:\Users\mcaprio\mathematica\SciDraw
C:\Users\mcaprio\mathematica\CustomTicks

etc., on an Apple Macintosh OS X system

1The way to decompress a ZIP file depends on your operating system, e.g., modern versions of Windows can open
ZIP files automatically, or Unix/Linux systems should have an unzip utility available from the command line.

2Common error: That is, all those subdirectories will have to be moved directly into the top level of
mcaprio/mathematica for Mathematica to find them, not buried deeper in some subdirectory. So, for instance,
“moving” packages as a whole into mcaprio/mathematica will not work. Pay careful attention to the example
names given below. There is no “packages” in them.

5

/Users/mcaprio/mathematica/SciDraw
/Users/mcaprio/mathematica/CustomTicks

etc., or, on a Linux system,

/home/mcaprio/mathematica/SciDraw
/home/mcaprio/mathematica/CustomTicks

etc.,

Setting the search path. Mathematica must still be told that this new directory is a place where it should
look in order to find package files. More specifically, Mathematica only searches for package files in the
directories listed in Mathematica’s variable $Path.3 You must append the name of your your own package
directory to this list, using AppendTo. For instance, given the example directory names we chose above,
for Windows 7 we would have4

AppendTo[$Path, "C:\\Users\\mcaprio\\mathematica"];

for the Macintosh

AppendTo[$Path, "/Users/mcaprio/mathematica"];

or for Linux

AppendTo[$Path, "/home/mcaprio/mathematica"];

You may also read the example in ref/$Path for a more elegant approach involving the use of the Mathe-
matica $HomeDirectory environment variable.

Note that, every time Mathematica is restarted, the $Path variable goes back to its “factory default”
value. Therefore, your package directory needs to be added to $Path each time you restart Mathematica.

That starts to sound like a nuisance, doesn’t it? Thus, you will probably want to adopt one of two simple
solutions, to avoid retyping this modification to the path each time:

1) The most obvious — but still not entirely satisfactory — solution is to include the AppendTo com-
mand in each notebook just before Get["SciDraw‘"]. But even this becomes tedious after a while.
And, if you share the notebook between different computer systems with different directory names — or
share it with collaborators who use different directory names — you will frequently have to edit the path
name given here.

2) The most satisfactory and permanent solution — though it takes a little bit more setup work work up
front, right now — is to include the AppendTo command in your personal init.m startup file.5 To find
where this file is located, first evaluate the Mathematica variable $UserBaseDirectory. For instance,
on a Windows 7 system, you might find

C:\Users\mcaprio\AppData\Roaming\Mathematica

on a Macintosh,

/Users/mcaprio/Library/Mathematica

or, on a Linux system,

/home/mcaprio/.Mathematica

3See ref/$Path for a more detailed explanation of the Mathematica search path.
4Note the need to use double backslashes inside the input string. See tutorial/InputSyntax to understand why. If

you have ever programmed with, e.g., C/C++ or Python, you will be familiar with such “backslash escapes”. Actually,
I prefer to use a single forward slash as the path separator even under Windows, as in the Mac and Linux examples —
using the forward slash in place of the backslash works just fine under modern versions of Windows.

5For more information on the initialization file, see tutorial/ConfigurationFiles.

6

Then, this “user base directory” should have a subdirectory named Kernel, which in turn should contain
the initialization file init.m. Open init.m — either with Mathematica or any text editor — and insert
the AppendTo command described above, anywhere in the file.

Loading the package. Once your $Path is set correctly, you can just load SciDraw as usual for a
Mathematica package6 with7

Get["SciDraw‘"]

If you prefer, you can use the equivalent but the shorter form <<SciDraw‘. You should see the SciDraw
startup message8

�������: Publication–quality scientific figures with Mathematica

M. A. Caprio, University of Notre Dame

Version x.xx HJanuary 1, 20xx L

View color palette Visit home page

�������

CAUTION: Load the package first! You must be sure to always load the package before you first
try to use any of the SciDraw commands. Not doing so is a very common source of trouble! If you ever
accidentally try to use any of the symbols defined in a Mathematica package, before loading the package,
when you do attempt to load the package you will see “shadowing” error messages such as

Figure::shdw : Symbol Figure appears in multiple contexts

9SciDraw`, Global`=; definitions in context SciDraw` may shadow or be shadowed by other definitions. à

FigurePanel::shdw : Symbol FigurePanel appears in multiple contexts

9SciDraw`, Global`=; definitions in context SciDraw` may shadow or be shadowed by other definitions. à

Then the package will not be able to run properly for the rest of your Mathematica session.9 You should exit
and restart Mathematica, and try loading the package again.10

Alternative installation procedure — Mathematica Applications directory. Although the
following procedure is not one I choose to follow myself, for reasons which will be noted below, it is pre-
ferred by some users and is therefore described here for completeness. Mathematica actually is installed
with a certain directory designated as a location for add-on “application” packages, and already included in
the default $Path.11 This location is a perfectly acceptable location for SciDraw, and you could simply
move the files there. However, using Mathematica’s designated directory for add-on packages is not nec-
essarily the most convenient choice — it is usually harder for you to keep track of this location (since it
is system-dependent), the packages included there might not automatically be included in backups of your
home directory, it might not be convenient to share this location between multiple systems on a network

6Again, see tutorial/MathematicaPackages for more on the basics of packages.
7If you are more advanced in using packages, you are probably asking “isn’t it more efficient to use

Needs["SciDraw‘"] rather than Get["SciDraw‘"]?”. True, Needs would insure that SciDraw is not
reloaded if it has already been loaded in the current session, e.g., from another notebook. But then you wouldn’t
get the “splash” cell displayed above – which has convenient buttons on it for accessing, most notably, a named color
palette.

8Common mistake: You need to end the package name with a backward single quote “‘”, not a forward single
quote “’”.

9There is a fundamental reason relating to how the Mathematica language handles contexts (i.e., namespaces) for
symbols. See tutorial/MathematicaPackages for an explanation.

10Actually, you do not really need to exit Mathematica. All you need to do is quit the Mathematica kernel
(Evaluation>Quit Kernel>Local from the menus).

11See tutorial/MathematicaFileOrganization.

7

running different operating systems, etc. Briefly, to find the directory which has been designated for add-
ons, evaluate the Mathematica variable $UserBaseDirectory, as described above, to find your “user
base directory”. This directory will have a subdirectory named Applications, which is the one we
are looking for. The Applications directory should already be included in the default Mathematica
$Path — you can evaluate $Path to check this. This is where you would place all the SciDraw package
subdirectories. For instance, under Windows 7, typical names would be

C:\Users\mcaprio\AppData\Roaming\Mathematica\Applications\SciDraw
C:\Users\mcaprio\AppData\Roaming\Mathematica\Applications\CustomTicks

etc.

Note for LevelScheme users. LevelScheme and SciDraw can both be installed at the same time, but
they cannot both be loaded in the same Mathematica session. You must quit the kernel (or quit Mathematica)
between using one and the other. There are many symbol names (such as Figure) which are common to
both packages, and which would therefore conflict with or “shadow” each other.

It is important to realize that LevelScheme and SciDraw share several subpackages (e.g.,
CustomTicks and InheritOptions). The older versions “left over” from your LevelScheme dis-
tribution might not be up-to-date enough to work properly with SciDraw. So you want to make sure the old
versions are not lingering anywhere in your search $Path, where they might accidentally be loaded instead
of the newer version. If you follow the recommended installation instructions above, for both LevelScheme
Version 3.53 and SciDraw, you will be fine, so long as are sure to replace the old versions of the subpackages
(from the LevelScheme distribution) with the new ones (from the SciDraw distribution). That is, delete any
old /home/mcaprio/mathematica/CustomTicks, taken from LevelScheme, and replace it with
the new version from SciDraw, and similarly for the other subpackages.

8

3 Basic concepts by tutorial
We will start with some “tutorials”, or worked examples, to get you started with SciDraw and on the path
towards using it comfortably and effectively. Some of the many types of plots and diagrams one might wish
to include in a scientific figure — and which one can generate with SciDraw — are illustrated on the front
cover of this guide. We will use the various panels of this figure as the bases for the tutorials.

In panel (a), we use SciDraw to set up the framework of the figure — the inner and outer frames and
labels — while relying on the Mathematica Plot command to generate the actual graphics of the plots.

In panel (b), where we create a schematic diagram of a molecule, SciDraw’s “object oriented” diagram-
ming tools come to the fore. We will see how to painlessly attach text labels to objects such as arrows or
circles, or attach objects to each other, and how to draw curves and shapes with easily controlled styling. We
will also see the interplay of general Mathematica capabilities and SciDraw — one can (relatively) easily
typeset complicated mathematics or calculate the points for a polar plot in Mathematica, which provides
some of the crucial ingredients for this plot. Then SciDraw allows you to assemble these ingredients into
the full figure.

Panels (c) and (d) illustrate plots of numerical data — assembled together with insets and annotations.
These are generated with SciDraw’s capabilities for styling and annotating data plots.

In the following tutorials, we will see how to draw the panels on the cover — and learn a lot more on the
way. You can find all the example code in the notebook Examples-Tutorials.nb, which is included
with SciDraw. You will want to follow along, running the code as you read the tutorial. You will also want
to try out some simple modifications to the code, for instance, playing with the values of formatting options.
We will intentionally digress a bit in the tutorials to cover some key ideas, so you can try these out as you
follow along, as well.

3.1 Tutorial 1: Getting started with figures and panels
3.1.1 Problem statement
Here we will generate the figure seen in panel (a) — although now we will draw it as a figure on its own,
not as part of a four-panel plot:

Y n

-0.5

0.0

0.5

1.0

0 5 10 15 20

J n

-0.5

0.0

0.5

1.0

0 5 10 15 20
x

9

That is, we would like to plot the Bessel functions J0 and J1, in the main panel, as well as the Bessel
functions Y0 and Y1, but smaller, in an inset panel. We also would like to place text labels “Jν” and “Yν” in
the figure, serving as titles to the main and inset panels, respectively.

3.1.2 Setting up the “canvas”
The first step in setting up this figure is in fact common to all figures in SciDraw. Much as an artist might,
we must first set up a “canvas” on which to draw the figure (or perhaps a scrap of paper if we are less
ambitious).

To understand the meaning and reason for this first step, we must first understand the problem. The
normal Mathematica plotting commands always squeeze their entire output — the plot itself, plus frame
and tick labels and axis labels, etc., into an area of some given size — either the default size chosen by
Mathematica or else as selected with the ImageSize option. So, if the axis labels or tick labels grow, the
actual plot itself shrinks. Compare, for instance, these Mathematica two plots, both of which are supposedly
“2 inches by 2 inches” (recall 1 inch is 72 printer’s points) — in fact, the plot region itself is smaller in both
cases, and much smaller in plot at right:

H∗ first plot ∗L

Plot @

Sin @xD, 8x, 0, 2 ∗ Pi <,

ImageSize → 72 ∗ 82, 2 <, AspectRatio → 1

D;

H∗ second plot ∗L

Plot @

Sin @xD, 8x, 0, 2 ∗ Pi <,

Frame → True,

FrameLabel → 8"x", "y" <, FrameStyle → Larger,

ImageSize → 72 ∗ 82, 2 <, AspectRatio → 1

D;

H∗ now let's show them together ∗L

GraphicsGrid @88%%, %<<, Frame −> All, Spacings −> 0D

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

0 1 2 3 4 5 6
-1.0

-0.5

0.0

0.5

1.0

x

y

This automatic shrinking may not matter much for a simple plot which is meant to be displayed by itself.
But it starts to become a nuisance if you are making several plots which should be the same size. Then it
becomes a real nuisance in a complicated figure, where you have carefully and delicately placed text labels
around the curves and diagrams — which are then thrown off when the figure shrinks, since font sizes do
not shrink along with the curves.

Now, for our Bessel function figure, let’s say we want the plot region to be 5 inches by 3.5 inches. We

10

ask for a canvas which is this size by setting up a Figure, with option CanvasSize->{5,3.5}:
Figure@

H∗ the actual body of the figure will go here ∗L,

CanvasSize → 85, 3.5<

D

The actual output from this is not much to look at — just a big blank rectangle (not shown here)! But the
important thing to realize is that SciDraw will actually give us a canvas which is larger than the requested
5 inches by 3.5 inches, by a 1 inch margin on each side. This means there is plenty of room for tick labels
and frame labels to fit out in the margin, and to shrink or grow as they will, without squeezing the plot. If
you would ever like to explicitly see the boundaries of the “main canvas region” (the part you draw the plot
itself in) and the “full canvas with margins” (where the frame labels will end up) outlined for you as you are
drawing a figure, you can add the option CanvasFrame->True to Figure:

Main canvas region

Full canvas Hwith marginsL

5 in

1 in 1 in
3.

5
in

In fact, there are a few more options for Figure, summarized in Sec. 5 — you might wish to
change the size of the margin (say, CanvasMargin->0, if you really don’t need the extra space) or
select an alternative unit to inches (say, CanvasUnits->Furlong, or maybe even something exotic like
CanvasUnits->Centimeter).

3.1.3 Setting up the main panel frame
But, returning to our figure, while generating a blank rectangle is not a bad start, we still have a few more
steps to go! The next step is also common to all SciDraw figures — setting up the panel in which the plot is
to be drawn. (There may, in fact, be more than one panel, as on the cover, but that discussion can wait for

11

later.) The panel is generated with FigurePanel:1

Figure@

FigurePanel@

8

H∗ the actual body of the main panel will go here ∗L

<,

XPlotRange −> 80, 20<, XFrameLabel −> textit@"x"D,

YPlotRange −> 8−0.6, 1.1<

D,

CanvasSize → 85, 3.5<

D

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
x

The first two things we think of when we set up a panel are the ranges for the coordinate axes and
the frame labels for the coordinate axes. The ranges are set with the XPlotRange and YPlotRange
options to FigurePanel. The labels — and these are optional — are set using the XFrameLabel
and YFrameLabel options. (We will come back to the textit["x"] later, in Sec. 3.1.5, but you can
probably figure out from the context that it gives an italic x, especially if you have used LATEX.)

The other thing that you might notice is that we specify options for each of the axes — x and y —
separately. This is different from the Mathematica plot functions, where you have to specify the properties
for both the axes together at once, for instance:

PlotRange → 880, 20<, 8−0.6, 1.1<<, FrameLabel → 8textit@"x"D, None<

SciDraw actually does accept the classic Mathematica style for the plot options as well, and you are
free to use it. But, in practice, with SciDraw, you will probably find it easier to separate out the information
for the two axes, as we have done here. This way, you can first think about the x axis, and enter all the
information for it, then move on to the y axis. Then, you can also tweak the options for one axis without
worrying about the options for the other. For instance, in our example we set the x-axis label without having

1Notice how Figure is a wrapper command for everything, while the FigurePanel “nests” inside the
Figure. Similarly, the inset panel will nest within this main panel. If you are a LATEX user, it might help to think
of the Figure as the “document” and the FigurePanel as analogous to an “environment”. This analogy will
continue to be useful as we expand our familiarity with panels and related SciDraw constructs.

12

to say anything about the y-axis, which didn’t need a label.2

In fact, there are some more panel options we would like to adjust right now.

The general principle is that SciDraw provides reasonable (or at least that’s the goal) de-
faults for properties, but then provides systematic ways of overriding these defaults through
options.

The full set of options for FigurePanel is summarized in Sec. 10.1. First, though, there are many styling
properties which can be specified not just for panels and panel labels, as we are discussing now, but also any
text or graphics we might include in a figure — say, the color or font family or line thickness.3 The options
which control these common properties are summarized in Sec. 8.

For instance, by default, SciDraw draws text in the "Times" font at 16 point size. After staring at
this figure, we might decide we would rather like a slightly smaller font for the frame labels, so we tell
FigurePanel we want FontSize->15.4

Also, the tick marks on the y-axis, as we just drew them above, are ridiculously close together. By
default, SciDraw follows Mathematica’s choice for the tick marks, which is usually reasonable but of course
will not always be ideal for any given figure. In fact, since here the major tick spacing is in steps of 0.25,
the tick labels end up having two digits after the decimal, which gives a very “busy”appearance. SciDraw
provides much finer control over tick marks, through the LinTicks and LogTicks functions.5 In this
example, the ticks need to run from −1 to 1. Steps of 0.5 between major ticks seem about right, and would
save us a digit after the decimal place. Then having maybe 5 minor ticks, i.e., in steps of 0.1, would be
plenty. So the full option is YTicks->LinTicks[-1,1,0.5,5].

And, in the figure we are trying to draw, notice that we also have a background color for the
panel — this is accomplished with Background->Moccasin. Actually, there are many ways of
naming colors in Mathematica (see guide/Colors). You can use any of these with SciDraw. For draw-
ing purposes, it is very convenient to refer to the large set of named colors which were provided
in early Mathematica versions. For instance, at least I personally find Moccasin and Firebrick
to be more descriptive and easier to remember than RGBColor[1.,0.894101,0.709799] and
RGBColor[0.698004,0.133305,0.133305]. The named colors were phased out with Mathemat-
ica 6,6 but SciDraw makes these names available for easy use. You can view a convenient palette of these
colors by clicking the “View color palette” button on the startup message SciDraw displays, or by entering
NamedColorPalette[] at any time.

2The real importance of separating out the x-axis options and y-axis options comes later, when we graduate to
multipanel plots. Then you will usually have several panels sharing the same x-axis properties (all the panels in the
same column) and several sharing the same y-axis properties (all the panels in the same row), and it will be imperative
to be able to provide these separately.

3The basic properties are the same ones that in Mathematica you would conventionally control with font options
to Style (see guide/FontOptions) or graphics directives (see guide/GraphicsDirectives), so it would help for you to
read up on those topics if you haven’t already.

4In fact, in order for a figure to look right, the font for the tick labels should typically be ∼ 20% smaller than that
for the frame label. SciDraw takes care of this automatically. But, as you might guess, this choice, too, you can control
by options!

5The tick mark control is provided by the CustomTicks package. This package is included as part of SciDraw,
but it is a stand-alone package which can also be loaded on its own, and used with any Mathematica graphics func-
tion which accepts the Ticks option (see ref/Ticks). It allows you to contruct sets of linear, logarithmic, or even
general nonlinear tick marks for use with the Ticks option. For the full story, see the separate CustomTicks guide
(CustomTicksGuide.pdf) included with SciDraw.

6See Compatibility/tutorial/Graphics/Colors for the full story.

13

Figure@

FigurePanel@

8

H∗ the actual contents of the main panel will go here ∗L

<,

XPlotRange −> 80, 20<, XFrameLabel −> textit@"x"D,

YPlotRange −> 8−0.6, 1.1<,

YTicks −> LinTicks@−1, 1, 0.5, 5D,

FontSize → 15,

Background → Moccasin

D,

CanvasSize → 85, 3.5<

D

-0.5

0.0

0.5

1.0

0 5 10 15 20
x

3.1.4 Interlude: Panels and coordinates
It is worth stepping back now to see what we really accomplish by setting up the panel. There is the
concrete, visible aspect of drawing the frame (the frame edges themselves, tick marks, tick labels, and frame
labels), background, and perhaps a panel letter, as well. But there is an equally important invisible aspect.
By defining the plot ranges for the axis, we are defining the mathematical coordinate system for everything
which is plotted or drawn within the panel. The FigurePanel gives us a “window” onto this mathematical
world — it sets up that the mathematical coordinates x ∈ [0,20] and y ∈ [−0.6,1.1] should map onto this
rectangular region of the canvas. In a little while, when we set up the panel for the inset at the upper right of
the figure, we will again set up a window into a different world, where the coordinates also run over these
same ranges. But the point (5,0), say, in the main panel ends up at a very different point on the canvas than
the point (5,0) in the inset panel. It is up to SciDraw to map points in these various panel coordinate systems
onto points on the big canvas — which, in the end, is all that Mathematica knows about or understands when
it displays the Figure graphics. It will be helpful to keep this in mind later when we get into the nitty gritty
of telling SciDraw where and how to place things in a figure.

Although you won’t practically use this quite yet, it may be helpful for you to keep in the back of your
mind that, at any given moment, we really have two ways of describing a point:

14

(1) the point’s canvas coordinates, where it is physically on the canvas, i.e., if you just took a ruler to
the page and measured from the lower left hand corner, and

(2) the point’s panel coordinates, i.e., how we would describe it mathematically if we read off a position
from the x and y axes marked on the panel’s edges.

These different descriptions of the same point are illustrated in the following figure:

Panel H5,0L
Canvas H234,174L

-0.5

0.0

0.5

1.0

y
0 5 10 15 20

x
Panel H5,0L
Canvas H90,89L

-0.5

0.0

0.5

1.0

y

0 5 10 15 20
x

-50

0

50

100

150

200

250

300

C
an

va
s

y
co

or
di

na
te

Hp
tL

0 100 200 300 400
Canvas x coordinate HptL

Main canvas
region

Full canvas

To be more precise about what we mean by canvas coordinates... As you can see from the outermost
frame in this illustration, the canvas coordinates are measured in printer’s points, and (0,0) is the bottom
left of the main canvas region.

If you wanted to connect the two circled points with a line, saying that the line goes from (5,0) to (5,0)
wouldn’t be very helpful! Having an underlying canvas, on which this line actually goes from (90,89) to
(234,174), is crucial. (We will see the most practical way of marking points on the canvas, e.g., to later
connect with lines, in Sec. 3.2.5 of the next tutorial, when we discuss anchors.)

3.1.5 Interlude: Typesetting in Mathematica
When we set the x-axis label just now, we promised we would come back to the question of what we meant
by textit["x"]... If you have used LATEX, you probably recognize that \textit is the LATEX command
for italics. SciDraw provides several functions to help with formatting text labels in figures. These do not
constitute anywhere as near an exhaustive framework as, say, LATEX itself provides — but you might find
some of them useful, and you will see them throughout the examples. A summary is given in Sec. 4.3.

15

More broadly, before we set out to label our figures, it would be helpful for us to take a moment to review
how text formatting and mathematical typesetting work in Mathematica. In principle, Mathematica allows
you to typeset virtually any mathematical expression you could imagine building. Therefore, you can also
typeset just about any expression you could imagine as a label for a SciDraw figure. However, Mathematica
does not give us anywhere near as fluent way a to do this formatting and typesetting as you might be used
to in LATEX. On the one hand, if you are a whiz with Mathematica’s point-and-click palettes and keyboard
shortcuts for typesetting,7 then you are pretty well set. On the other hand, if you are like me and have very
little patience for WYSIWYG editing — especially once expressions get a little more complicated, and you
want to cut and paste and move parts of them around — you will instead probably find yourself using the
approach which Mathematica uses interally to handle typesetting. This is more cumbersome but also more
robust.

In Mathematica, typeset expressions are built out of boxes.8 For example, an expression which you
see on screen as, say, x2 — an italic x with a superscript 2 — is represented internally as a Mathematica
symbolic expression like any other

Superscript@Style@"x", ItalicD, 2D

It is only when this expression is actually displayed that the notebook front end draws it as an italic x with
a superscript 2. The functions Superscript and Style are called box generator functions. They don’t
actually do anythings themselves, but, when they appear in a symbolic expression like this one, they tell the
notebook front end (or the Export function for graphics, etc.) how to format the expression.

Let us compare the two approaches for the simple case of our label for the x-axis — an italic “x”.
We could have simply entered the “x” in italics, from the keyboard, when we typed the string for the
XFrameLabel option

XFrameLabel → "x" H∗ notice the italic x, not roman x ∗L

That is, we could have used Ctrl-I then x then Ctrl-I, or selected Format>Face>Italic from the menus. This
is easy enough... Except, in old versions of Mathematica, if you did that in an input expression, like here,
about the third or fourth time you opened the notebook, the string would be spontaneously corrupted and
you would have to retype the whole thing from scratch (Mathematica bugs!). This has still happened to me
recently, so I don’t try it any more. What’s more, if you can reliably tell "x" from "x" on screen, you
have a better I than eye (?). Otherwise, you are likely to slip up pretty often (assuming you care about such
details, which you probably do, if you are bothering to learn SciDraw in the first place).

On the other hand, the way to do this by the Mathematica styling function Style

XFrameLabel → Style@"x", ItalicD H∗ or Style@"x",FontSlant−>ItalicD ∗L

is a bit of a mouthful. Hence SciDraw’s LATEX-like shorthands

XFrameLabel → textit@"x"D

To more fully illustrate the point of WYSIWYG vs. box input, let’s look at how we might typeset an
expression like Jν(x) — although, in the end, we will actually choose a slightly simpler label for this figure.
Either the WYSIWYG

YFrameLabel → "JνHxL" H∗WYSIWYG ∗L

or box formatting

7See howto/EnterMathematicalTypesetting or guide/MathematicalTypesetting.
8See tutorial/RepresentingTextualFormsByBoxes and tutorial/FormattedOutput for the concepts, then, in par-

ticular, see ref/Row, ref/Subscript, and ref/Style for a practical quick start.

16

YFrameLabel → Row@8Subscript@textit@"J"D, "ν"D, "H", textit@"x"D, "L"<D

H∗ box formatting ∗L

approach works. You can take your pick. But you can expect the latter form in the examples which come
with SciDraw.

Actually, aside from personal preference, you will find that typesetting by box generator functions turns
out to be very powerful if you are programming your labels. This will be illustrated in the tutorial in Sec. ??,
and it really needs to wait until we have a little more experience drawing labels in figures. But, for a rough
idea, say you had 20 different curves to label J0, J1, J2, . . ., J20. (I guess that actually makes 21, doesn’t
it?) And you draw these curves inside a loop over n from 0 to 20. It will be a whole lot easier to type
Subscript[textit["J"],n] once and for all, than to go back and label these 21 curves manually.
Here’s a simpler Mathematica example even before we learn how to draw and label curves9

Table@

Style@Row@8Subscript@textit@"J"D, nD, "H", textit@"x"D, "L"<D,

FontFamily → "Times New Roman"D,

8n, 0, 20<

D

8J 0HxL, J 1HxL, J 2HxL, J 3HxL, J 4HxL, J 5HxL, J 6HxL, J 7HxL, J 8HxL, J 9HxL, J 10HxL,

J 11HxL, J 12HxL, J 13HxL, J 14HxL, J 15HxL, J 16HxL, J 17HxL, J 18HxL, J 19HxL, J 20HxL<

3.1.6 Including a plot from Mathematica
Now that have a pretty good understanding of what we are doing as we set up the panel, we can get back
to the business of drawing the figure. Plotting the Bessel functions in Mathematica is straightforward (it is
assumed that you are familiar with Plot).

Plot@BesselJ@0, xD, 8x, 0, 20<, PlotStyle → FirebrickD

5 10 15 20

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

Then, incorporating this plot into the SciDraw figure is trivial. In fact, we can include any Mathematica
graphics. We just “wrap” it with the SciDraw function FigGraphics and include it where we marked
before that (* the actual body of the main panel will go here *).

9You aren’t familiar with Table? This is some of the basic Mathematica you will want to read up on now (see
tutorial/RepetitiveOperations and tutorial/MakingTablesOfValues), and it will pay off quickly.

17

Figure@

FigurePanel@

8

H∗ plots ∗L

FigGraphics@Plot@BesselJ@0, xD, 8x, 0, 20<, PlotStyle → FirebrickDD;

FigGraphics@Plot@BesselJ@1, xD, 8x, 0, 20<, PlotStyle → 8Firebrick, Dashed<DD;

<,

XPlotRange −> 80, 20<, XFrameLabel −> textit@"x"D,

YPlotRange −> 8−0.6, 1.1<,

YTicks −> LinTicks@−1, 1, 0.5, 5D,

FontSize → 15,

Background → Moccasin

D,

CanvasSize → 85, 3.5<

D

-0.5

0.0

0.5

1.0

0 5 10 15 20
x

3.1.7 Adding some annotations: Labels and rules
Looking back at the figure we are trying to draw, we see that there are still some missing ingredients in the
main panel. Now is where SciDraw’s drawing and annotation tools come into play. For one thing, we want
to insert a text label Jν near the top left, to serve as a title for the panel. We already saw how to typeset this
text, but not how to insert it into a figure. For another, we also need to draw a horizontal rule (i.e., straight
line segment) running across the panel where the x-axis would be (i.e., at y = 0). These tasks allow us to
meet our first two members of the zoo of SciDraw drawing objects.

First, the label. You will insert lots of labels in your lifetime. There are two essential pieces of informa-
tion which you must specify — where and what. The basic syntax is FigLabel[p,text], where p is the
point where we want the label to go.10

10Whenever you are ready, you can refer to Sec. 12 for the not-so-basic syntax. Actually, the most important place

18

By eye, it looks like we want to put the label ∼ 20% of the away across the figure and ∼ 85% of the
way up the figure.11 We could try to convert this position into mathematical coordinates within the panel.
Reading off the axes, we would decide that the coordinates should be (4,0.845) or thereabouts.

FigLabel@84, 0.845<, Subscript@textit@"J"D, "ν"D, FontSize → 15D

This will work. But it is not ideal. First, determining the panel coordinates (reading off the axes) is a tedious
extra step. Worse, in the process of preparing any given figure, you are likely to have to adjust the coordinate
axis ranges many times. It would be quite inconvenient to have the panel title label move around every time
you do so! Even worse, we often want to put labels in corresponding positions, for consistency, across
several panels or even several figures. This is well nigh impossible if the coordinate ranges for the panel
axes may be entirely different.

The solution is that we have yet another way to describe the coordinates of a point — by where it is frac-
tionally within the panel, from left to right and from bottom to top. These fractions are known as the scaled
coordinates. You might already be familiar with Mathematica’s Scaled coordinate notation.12 These coor-
dinates run from 0 to 1 across a Mathematica plot. SciDraw generalizes this idea so that scaled coordinates
run from 0 to 1 across each individual panel of a figure. For instance, the bottom left is Scaled[{0,0}],
the center is Scaled[{0.5,0.5}], and the top right is Scaled[{1,1}]. Let us repeat part of our
earlier diagram on the topic of coordinates, to illustrate this:

Scaled H0,0L

Scaled H1,1L

-0.5

0.0

0.5

1.0

y

0 5 10 15 20

x

Scaled H0,0L

Scaled H1,1L

-0.5

0.0

0.5

1.0

y

0 5 10 15 20
x

Thus, to put our label ∼ 20% of the way across the figure and ∼ 85% of the way up, we use

FigLabel@Scaled@80.2, 0.85<D, Subscript@textit@"J"D, "ν"D, FontSize → 15D

Then, for drawing the horizontal rule. There are actually many ways we could accomplish

to look first is in Sec. 8, where you will find various options for framing and positioning text. These options can be
applied to any text in a figure, not just a FigLabel. We will have more to say about labels in Sec. ?? of the following
tutorial.

11When some users try visualize the “fraction” of the way across the panel where something should go, apparently
they find that it helps to let their eyes blur out a bit, so they can view the panel as a big empty rectangle, without being
distracted by the curves and such. I don’t actually do this literally, but maybe it will work for you. In any case, the
mindset is useful.

12See ref/Scaled.

19

this. SciDraw lets us draw any line (or curve connecting a series of points) as a FigLine object,
FigLine[{p1,p2,. . .,pn}] (see Sec. 11.1).13 So, we could use

FigLine@880, 0<, 820, 0<<D

Or, being clever, and realizing this curve should run from the far left to the far right, we could use scaled
coordinates along the x-axis, as

FigLine@88Scaled@0D, 0<, 8Scaled@1D, 0<<D

But horizontal and vertical rules show up so often that I finally go tired of thinking this through and just
added a new drawing object FigRule. This has the form FigRule[Horizontal,y,{x1,x2}] or
FigRule[Vertical,x,{y1,y2}] (see Sec. 12.2). Even more simply, we can alternatively specify that
the range should be All, to obtain a rule which extends the full panel width or height. Thus, for the rule at
y = 0, we use

FigRule@Horizontal, 0, AllD

Collecting everything so far, we have:

Figure@

FigurePanel@

8

H∗ panel label ∗L

FigLabel@Scaled@80.2, 0.85<D,

Subscript@textit@"J"D, "ν"D, FontSize → 15D;

H∗ horizontal rule ∗L

FigRule@Horizontal, 0, AllD;

H∗ plots ∗L

FigGraphics@Plot@BesselJ@0, xD, 8x, 0, 20<, PlotStyle → FirebrickDD;

FigGraphics@

Plot@BesselJ@1, xD, 8x, 0, 20<, PlotStyle → 8Firebrick, Dashed<DD;

<,

XPlotRange −> 80, 20<, XFrameLabel −> textit@"x"D,

YPlotRange −> 8−0.6, 1.1<,

YTicks −> LinTicks@−1, 1, 0.5, 5D,

FontSize → 15,

Background → Moccasin

D,

CanvasSize → 85, 3.5<

D

13The idea is the same as for the Mathematica graphics primative Line (see ref/Line).

20

J n

-0.5

0.0

0.5

1.0

0 5 10 15 20
x

3.1.8 Setting up the inset panel
Finally, we are ready to add the inset panel. There is not much to this, now. We already know how to make
a panel with FigurePanel. Panels can be “nested”, one inside another. That is, you can include an inset
panel as part of the contents of an outer panel, just as we included graphics, labels, and rules above. In fact,
you can do so indefinitely, in an infinite regress, if you are really in need of entertainment.

The only new piece of information which we must specify is the region which the panel should cover.
This is given as the PanelRegion option. In SciDraw, rectangular regions are described just as in the usual
Mathematica PlotRange option, as {{x1,x2},{y1,y2}}. We would like the inset panel in the figure we
are working on to fill an area running from ∼ 55% to ∼ 95% of the way along the x and y directions of the
panel. Once again, the tedious and ultimately unreliable way would be to to try to read off the positions
on the axes and specify this range in terms of the panel coordinates — say {{10,20},{0.5,1.0}}.
However, more naturally, SciDraw also allows the region to be specified in scaled coordinates.14 So, we can
simply use

14For more on specifying regions, see Sec. 7.4.

21

FigurePanel@

8

H∗ the actual body of the inset panel will go here ∗L

<,

PanelRegion −> Scaled@880.55, 0.95<, 80.55, 0.95<<D

D;

Then let’s not forget the usual panel options, for the axes. We will choose a smaller font size for the
labels on this smaller inset panel (FontSize->12) and a new background color as well. Then the contents
of the panel really introduce nothing new. We draw them as before, but now using the functions Yν in place
of Jν .

3.1.9 The final figure
Putting it all together, the code for the figure is something like:

22

Figure@

FigurePanel@

8

H∗ panel label ∗L

FigLabel@Scaled@80.2, 0.85<D, Subscript@textit@"J"D, "ν"D, FontSize → 15D;

H∗ horizontal rule ∗L

FigRule@Horizontal, 0, AllD;

H∗ plots ∗L

FigGraphics@Plot@BesselJ@0, xD, 8x, 0, 20<, PlotStyle → FirebrickDD;

FigGraphics@Plot@BesselJ@1, xD, 8x, 0, 20<, PlotStyle → 8Firebrick, Dashed<DD;

H∗ inset panel ∗L

FigurePanel@

8

H∗ panel label ∗L

FigLabel@Scaled@80.2, 0.85<D, Subscript@textit@"Y"D, "ν"D, FontSize → 12D;

H∗ horizontal rule ∗L

FigRule@Horizontal, 0, AllD;

H∗ plots ∗L

FigGraphics@Plot@BesselY@0, xD, 8x, 0, 20<, PlotStyle → FirebrickDD;

FigGraphics@Plot@BesselY@1, xD, 8x, 0, 20<, PlotStyle → 8Firebrick, Dashed<DD;

<,

PanelRegion −> Scaled@880.55, 0.95<, 80.55, 0.95<<D,

XPlotRange −> 80, 20<,

YPlotRange −> 8−0.6, 1.1<,

YTicks −> LinTicks@−1, 1, 0.5, 5D,

FontSize → 12,

Background → LightGray

D;

<,

XPlotRange −> 80, 20<, XFrameLabel −> textit@"x"D,

YPlotRange −> 8−0.6, 1.1<,

YTicks −> LinTicks@−1, 1, 0.5, 5D,

FontSize → 15,

Background → Moccasin

D,

CanvasSize → 85, 3.5<

D

23

3.1.10 Supplement: Inserting three-dimensional or other Mathematica
graphics

Before we abandon this example, this would be a good place to illustrate an important point regarding the
inclusion of Mathematica graphics within a figure, which it will help you to be aware of: There are really two
very different ways in which you might want to include graphics in a figure: one which naturally involves
mathematical coordinates, and one which doesn’t.

Sometimes, as with the plot of a function, the graphics intrinsically lies in a mathematical coordinate
system — which we need to make sure gets aligned with the axes on our panel. For instance, here, that first
peak of the Bessel function had better lie at the panel coordinates (1,0), or that first node at (2.40,0).

In fact, it is informative to look at what the output of Plot really is, as a Mathematica Graphics
expression. Let us inspect it by displaying it in InputForm, so that the front end actually shows us the
expression instead of rendering it as an image:15

Plot@BesselJ@0, xD, 8x, 0, 20<, PlotStyle → FirebrickD êê InputForm

Graphics@888

Hue@0.67, 0.6, 0.6D,

Line@8

80., 1.<, 80.006134358411192534, 0.9999905924338464<,

XXX ... lots of points omitted here ... \\\

819.993135319588603, 0.16747959167242185<,

819.999999591836733, 0.16702469161939587<

<D

<<<,

8

AspectRatio −> GoldenRatio^H−1L,

Axes −> True, AxesLabel −> 8None, None<,

XXX ... some plot display options omitted here ... \\\

PlotRange −> 880, 20<, 8−0.40275898943117655, 1.<<<

<

D

We see that the main result of Plot is really just a list of mathematical coordinates of two-dimensional
points describing the curve — that is, contained in a “Line primative”, with some cosmetic wrapping put
around it describing how this curve should be displayed.

In a case such as this, where mathematical coordinates are involved, FigGraphics is the right
SciDraw object to use to incorporate the graphics into the SciDraw figure. FigGraphics takes care
of transforming the curve to the right position on the canvas, so that its mathematical coordinates align with
the panel’s coordinate axes.

However, there are other types of graphics which we might want to include in a figure — such as a
rasterized photographic image, or a three-dimensional plot which we are embedding in a two-dimensional
figure — which don’t have any natural association with mathematical coordinates at all. In this case, there
is another SciDraw object, FigInset, which is the one we want to use — FigInset just “shoves” or
insets the included graphics into whatever rectangular region on the figure we choose.16 The syntax is

15Graphics in Mathematica are represented internally as a Graphics expression, which contains a list of graph-
ics primatives such as lines, points, and text. Only when this expression is passed back to the front end, to
be displayed, is it actually rendered as an image. It would actually be very good background for you to read
guide/SymbolicGraphicsLanguage to learn what all the parts of this expression really mean. The more you under-
stand about Mathematica graphics, the more you can successfully work with it.

16The name FigInset comes from the Mathematica Inset primative (see ref/Inset), which provides this func-

24

FigInset[graphics,region].17

It is worth taking a moment to illustrate the use of FigInset, and also to see how easy it is to insert
three-dimensional plots into a figure. Suppose we wanted to include a surface plot of J0(r) in the figure
(we will do a polar three-dimensional surface plot using ParametricPlot3D, but the details are not
important right now):18

ParametricPlot3D@

8r ∗ Cos@phiD, r ∗ Sin@phiD, BesselJ@0, rD<,

8r, 0, 20<, 8phi, 0, 2 ∗ Pi<,

BoxRatios → 820, 20, 10<

D

-20

-10

0

10

20
-20

-10

0

10

20

0.0

0.5

1.0

It would be nice to insert this figure so that it covers the same region as the inset panel did in our
example — from the ∼ 55% point to ∼ 95% point horizontally and vertically on the figure, so we try

tionality. Insetting in this sense is not to be confused with the idea of an inset panel, which, as we saw, is simply
created using FigurePanel.

17See also Sec. 13 of the reference manual for more on FigGraphics and FigInset.
18Actually, you should be warned that three-dimensional surface graphics in Mathematica, ever since Mathematica

6, by default uses newer graphics features (smooth shading and adaptive sampling) which are not well-supported by
the PostScript and PDF formats. The features allow the surfaces to obtain a very “smooth” apearance on screen (not
shown in this guide). However, the result is that, if you are planning on obtaining EPS or PDF output for publication
(as you very likely are), you will end up with tremendous file sizes. You can disable the problematic features, and trade
off some of this smoothness for a much smaller file size, by giving Plot3D or ParametricPlot3D the options
MaxRecursion->2 (you can play with this number to obtain a suitable compromise between size and quality),
Mesh->Full, and NormalsFunction->None. That is what we have actually done to generate the output in this
tutorial, as you can inspect in Examples-Tutorials.nb.

25

FigInset@

ParametricPlot3D@

8r ∗ Cos@phiD, r ∗ Sin@phiD, BesselJ@0, rD<,

8r, 0, 20<, 8phi, 0, 2 ∗ Pi<,

BoxRatios → 820, 20, 10<

D,

Scaled@880.55, 0.95<, 80.55, 0.95<<D

D;

-20
-10

0
10

20 -20

-10
0

10
200.0

0.5
1.0

-0.5

0.0

0.5

1.0

0 5 10 15 20
x

Oops... Maybe that is not quite what we were trying for! FigInset shows everything which Math-
ematica would display for the graphics. This includes the three-dimensional axes and frame box — and a
whole lot of white space, since it turns out that Mathematica inscribes the plot in a three-dimensional box
which is in turn inscribed in a two-dimensional rectangle! We can turn off the box with Axes->None
and Boxed->False when we generate the parametric plot.19 We can also compensate for the whites-
pace by extending the region covered by this inset. For this, we could just enter a larger region by hand,
but FigInset also gives us RegionExtension and RegionDisplacement options, which save
us these calculations. For instance, RegionExtension->Scaled[0.3] expands the inset region by
30%.20 Here we use

FigInset@

ParametricPlot3D@

8r ∗ Cos@phiD, r ∗ Sin@phiD, BesselJ@0, rD<,

8r, 0, 20<, 8phi, 0, 2 ∗ Pi<,

BoxRatios → 820, 20, 10<, Axes → None, Boxed → False

D,

Scaled@880.55, 0.95<, 80.55, 0.95<<D,

RegionExtension → Scaled@0.3D, RegionDisplacement → Scaled@8−0.075, 0<D

D;

Putting this all together, we have our new figure (you can find the full source code in

19See guide/GraphicsOptionsAndStyling.
20See Sec. 13 for options to FigInset, and Sec. 7.4 for the underlying principles of adjusting regions.

26

Examples-Tutorial.nb):

-0.5

0.0

0.5

1.0

0 5 10 15 20
x

27

3.2 Tutorial 2: Using objects, anchors, and styles
This tutorial is still under construction. You will want to give it a second reading when it is finished for an
introduction to the more advanced topics, such as anchors and styles.

3.2.1 Problem statement
Here we will generate the figure seen in panel (b):

x

y

mb

ma

»YHr
e
;Ra,RbL»

2

That is, to start with, we would like to the two nuclei in a diatomic molecule, and an electron, as different
style circles. Then, we need arrows indicating various positions and displacements. We will want text labels
to be neatly attached to these circles and arrows. As the finishing touch, we will superimpose polar plots
representing the electron wave function.21

3.2.2 Drawing the objects
There are several aspects to this diagram — the shapes themselves, the labels, and the wave function plots.
We will discover that there are also several powerful ideas — attached labels, anchors, and styles — built
into SciDraw which, while not strictly necessary for creating this diagram, can make the process much
cleaner. Practically, these make it easier to adjust the appearance and details of the figure later, as well as to
make figure styling consistent across figures if this figure is one of several being prepared. After we have
made a first pass at drawing this diagram, we will return and see how we might bring these more advanced
ideas to bear.

Let us start by putting the skeleton in place, that is, drawing the main parts of the molecular diagram,
and then worry about the fancier parts (labels and wave function plots) later. Here we get to meet some more
SciDraw drawing objects — standalone axes, circles, and arrows.

For each object, we actually care about two things — its geometry (what’s being drawn where) and its
appearance (line thicknesses and colors). The geometry for a circle, for instance, is described by the center
point and radius, and the geometry for an arrow is described by its endpoints.22

21The concept for this figure was contributed by M. Morrison, for use in this tutorial.
22There are actually a lot of possibilities for specifying the “radius” of a circle in SciDraw, and the idea of a “circle”

generalizes to that of ellipses and arcs. An arrow can also be a lot more sophisticated than shown here. These shapes
are revisited in Sec. 4.1. The full details are given in Sec. 11 of the reference manual.

28

In[248]:= Figure@

FigurePanel@

8

Module@

8

palpha = 81, 1.5<,

pbeta = 82.5, 1<,

pe = 81.45, 1.45<

<,

H∗ particles ∗L

FigCircle@palpha, Radius → Canvas@8D, LineThickness → 2, FillColor → FirebrickD;

FigCircle@pbeta, Radius → Canvas@8D, LineThickness → 2, FillColor → FirebrickD;

FigCircle@pe, Radius → Canvas@4D, LineThickness → 2, FillColor → BlueD;

H∗ position vectors ∗L

FigArrow@880, 0<, palpha<, LineThickness → 1.5D;

FigArrow@880, 0<, pbeta<, LineThickness → 1.5D;

FigArrow@880, 0<, pe<, LineThickness → 1.5, LineDashing → DashedD;

FigArrow@8pbeta, palpha<, LineThickness → 1.5D;

FigArrow@880, 0<, Hpalpha + pbetaL ê 2<, LineThickness → 1.5D;

D

<,

PlotRange → 880, 3<, 80, 2<<

D,

CanvasSize → 86, 4<

D

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

29

Even though we are drawing a diagram now, not “plotting a function” as in the last tutorial, no-
tice that the first step is still to define a mathematical x and y coordinate system for the panel, with
PlotRange->{{0,3},{0,2}}. We then give the positions of the various drawing elements (circles and
arrows) in terms of these coordinates.23 We get to define the coordinate range however we find most conve-
nient for making the diagram. We will turn off the frame in a moment, by giving the option Frame->False
to FigPanel. However, I have left in on for now to help you to visualize the coordinates. In fact, when-
ever you are working on drawing a diagram, you should feel free to keep the frame displayed as long as you
would like.

For instance, the first FigCircle in this example code generates the circle representing the left-hand
nucleus (the one named “α”). Notice that its center is given as {1,1.5}. Actually, we defined variables
(here, palpha={1,1.5}) for many of the coordinates, to simplify changes if we ever want to play with
adjusting the positions — in fact, the present form of the diagram of the result is the result of a good bit of
playing. The use of Module, incidentally, is just good coding habit.24 It makes sure the variables palpha,
etc., are kept local, and can’t conflict with any other work we are doing in Mathematica which might use the
same variable names.

On the other hand, for the radius of the circle, using mathematical coordinates may not be our first
choice. It might be a bit easier just to specify how large it should be in printer’s points. In SciDraw, not only
can coordinates be given in terms of the canvas, as we saw in (Sec. 3.1.2), but distances such as radii can be,
as well. A radius of Canvas[8] means 8 printer’s points. In fact, you will rarely, if ever, need to specify
coordinates in terms of the canvas, but will frequently find it helpful to express distances in this way.

For the appearance of the objects in the figure, we start by realizing that any SciDraw object may have
both an outline and a fill,25 and that the appearance of each of these can be controlled separately by various
options. For instance, we already saw LineThickness in Tutorial 1, and now we use LineDashing
and FillColor as well. The object might also incorporate some text, in the form of attached labels, as we
will see shortly, and the appearance (font, size, color, background, frame, etc.) of this text is also controlled
through options. The full list, including some very technical options, may be found in Chapter 8. For now,
it is worth just summarizing the most essential options here in Table 3.1.

23I point this out only since it has apparently been surprising to some users. Maybe it is pretty obvious that a
diagram of a physical object, in space, such as a molecule would involve coordinates. But any diagram you draw, say,
even a level scheme (Sec. 4.5), will involve x and y coordinates. It might help you to think of sketching your drawing
on graph paper. In any case it is a whole lot easier for us to think about, for instance, drawing the circle representing
the left-hand nucleus at the point (1,1.5) than to have to work out that we want it at a position of (144,216) printer’s
points from the bottom left of the canvas. That is the dirty work which SciDraw ultimately does for us internally.

24We could have used Module, Block, or With in the present example, more or less interchangeably. See
tutorial/ModulesAndLocalVariables and tutorial/BlocksAndLocalValues. However, after having been burned several
times, I now avoid using Block for local variables when preparing a Figure. (If you accidentally use, as a local
variable name in Block, any symbol which already has an important special meaning in Mathematica, this can
sabatoge the inner workings of SciDraw or Mathematica itself, resulting in indecipherable error messages. Using the
symbol N (see ref/N) as a local variable in Block is my most common mistake. I make it several times a year and
never seem to realize that is what is causing the mysterious error messages and garbage results.)

25The ideas of outline and fill roughly correspond to those of edge and face, respectively, for a Mathematica graphics
primative (see, e.g., ref/EdgeForm and ref/FaceForm) — but only roughly, since a SciDraw drawing object will in
general be comprised of more than one primative.

30

Table 3.1 Some of the most commonly-needed options affecting the appearance of an object. See
Sec. 8 for a complete listing.

Option Default
Show True Whether or not the object should be visible.
Color Black Default color to be used for all parts of object,

unless overridden by LineColor, FillColor,
PointColor, TextColor, etc.

ShowLine Default Whether or not the outline should be visible.
LineColor Default Color to be used for the outline.
LineThickness 1 Line thickness to be used for the outline.
LineDashing None Dashing to be used for the outline.
ShowFill Default Whether or not the fill should be visible.
FillColor Default Color to be used for the fill.
ShowText Default Whether or not the text should be visible.
TextColor Default Color to be used for the text.
FontFamily "Times" The font family.
FontSize 16 The font size, in printer’s points.
FontWeight Plain The font weight (or boldness).
FontSlant Plain The font slant (or italicization).
TextBackground None The text background color.
TextFrame False Whether or not to show a frame line around the text.
TextFrameColor Default Color to be used for the text frame line.
TextMargin None The margin, in printer’s points, between the text and

the edge of its background coloring and frame line.
Style None The style (or list of styles) from which all option

defaults should be taken.

3.2.3 Interlude: Time to meet the family
Rather than keeping you in suspence, and having random new types of drawing objects wandering into
these tutorials, once every few paragraphs, let’s just present the rogue’s gallery of SciDraw drawing ob-
jects. We can roughly (very roughly) divide these into basic drawing shapes and more specialized ob-
jects meant for annotating a figure. (Incidentally, you can find the source code for the following figures in
Examples-Tutorial.nb.)

The “shapes” include FigLine for lines (these may encompass many points p1, p2, . . ., pn and there-
fore actually more generally represent curves), FigPolygon for polygons (these are closed lines with
fills), FigRectangle for squares or rectangles (yes, any rectangle can be drawn as a polygon, but there
are more convenient ways to describe a rectangle, such as giving its center point and dimensions, than to list
all four corner points as you would have to for a generic polygon!), and FigCircle for circles or ellipses
(more generally, this category encompasses circular or elliptical arcs and pie wedges):26

26Notice that the SciDraw drawing objects have names beginning with Fig, for “figure”, which distinguishes them
from preexisting names with different meanings within Mathematica. If you are familiar with the Mathematica sym-
bolic graphics language, you will realize that these shapes correspond roughly to Mathematica’s Line, Polygon,
Rectangle, and Circle or Disk primatives (see guide/SymbolicGraphicsLanguage or guide/GraphicsObjects).

31

FigPolygon FigRectangle FigCircle FigCircle

There are also a couple more, not shown here: FigPoint for a simple point27 and FigBSpline for
splines. All these objects are described in detail in (Sec. 11).

Some of the additional objects provided by SciDraw, for general-purpose use in figures, are FigLabel
for labels (Sec. 12.1), FigArrow for arrows (Sec. 11.3), FigAxis for axes (Sec. 10.4), FigBracket
for brackets (Sec. 12.3), and FigRule for horizontal or vertical rules (Sec. 12.2):

»YHre;Ra,RbL»
2

FigLabel
FigArrow

FigArrow

10
0

10
1

10
2

E
HM

e
V
L

FigAxis
Domain

R
a
n
g
e

FigBracket

FigRule

We have already encountered FigLabel, FigArrow, and FigRule, and we will have need for
FigAxis in the present figure shortly. There are also more specialized objects for use in level schemes
(Sec. 14).

3.2.4 Attaching text labels
By now, you might be worrying how we will add all those text labels. How are we ever going to figure
out the coordinates at which to put the mα and mβ , even, so that they snuggle up nicely to the circles, no
less those of the labels on the arrows? Worse, if you have ever tried to angle a label so that it runs along a
slanted line, by trial and error, you know how frustrating that is. Maybe we could calculate the angle from
the coordinates of the line endpoints, with a little trig and a bit of patience. And let’s hope we don’t have
to move any of those circles around later as we revise the figure, since then we sure will have a lot of label
positions to figure out again.

As you may have figured out by now, that is the type of thing which drove me sufficiently nuts as a
graduate student that, instead of working on the figure I was supposed to be working on by pointing and
clicking and dragging with a mouse, I would go off and write Mathematica code instead. The hope was that,
if I worked hard enough at coding, the figure would magically appear. It did. Here’s the rough idea... Any
SciDraw object can have one or more attached labels, depending upon the type of object. Each of these has
a name indicating its position relative to the object — typical names would be Left for the left, Right for
the right, Top for the top, Bottom for the bottom, Center for the center, or Head and Tail for the ends
of an arrow.

27In terms of what can be drawn with it, FigPoint is basically redundant to a filled-in FigCircle, but it
FigPoint is defined for consistency with Mathematica’s Point primative.

32

Module@

8

palpha = 81, 1.5<,

pbeta = 82.5, 1<,

pe = 81.45, 1.45<

<,

H∗ particles ∗L

FigCircle@

palpha,

Radius → Canvas@8D, LineThickness → 2, FillColor → Firebrick,

LeftLabel −> Subscript@textbf@"m"D, "α"D, TextBuffer → 2

D;

FigCircle@

pbeta,

Radius → Canvas@8D, LineThickness → 2, FillColor → Firebrick,

RightLabel −> Subscript@textbf@"m"D, "β"D, TextBuffer → 2, TextNudge → −4

D;

FigCircle@

pe,

Radius → Canvas@4D, LineThickness → 2, FillColor → Blue

D;

H∗ position vectors ∗L

FigArrow@

880, 0<, palpha<,

LineThickness → 1.5,

RightLabel → Subscript@textbf@"R"D, "α"D

D;

FigArrow@

880, 0<, pbeta<,

LineThickness → 1.5,

RightLabel → Subscript@textbf@"R"D, "β"D

D;

FigArrow@

880, 0<, pe<,

LineThickness → 1.5, LineDashing → Dashed,

RightLabel → Subscript@textbf@"r"D, textit@"e"DD, RightLabelPosition → 0.7

D;

FigArrow@

8pbeta, palpha<,

LineThickness → 1.5,

RightLabel → textbf@"R"D, RightLabelPosition → 0.45

D;

FigArrow@

880, 0<, Hpalpha + pbetaL ê 2<,

LineThickness → 1.5,

RightLabel → Subscript@textbf@"R"D, "c.m."D

D;

D; 33

ma

mb

For now, here is one important tidbit, to help you understand the meaning of RightLabel and
LeftLabel in the example... In SciDraw, several object types involve curves: most notably, FigLine,
FigArrow, Trans, and DataPlot. The “left” and “right” sides of a line or curve refer to left and right
sides from the curve’s perspective, not necessarily the left or right side from your perspective, looking down
at the page! If you have ever talked about something being “on the left side of the road” or “on the right side
of the road”, you should be fine with this! You didn’t necessarily mean the west side when you said “left” or
the east side when you said “right”, even though those would seem to be the left or right sides for someone
looking at a map. Think from the viewpoint of a car driving along the curve or, if you are an entomologist,
an insect crawling along the curve:28

Left
Righ

t

Left

Right
LeftRight LeftRight LeftRight

Left

Right

Left
Right

LeftRight

3.2.5 Interlude: Attached labels and anchors [STUB]

To appreciate how this is working, it would help to look in more detail at the concepts involved in attaching
text to an object, or positioning text in a figure in general. This naturally leads to the idea of an anchor
(Sec. 7.1.2).

The rest of this tutorial is under construction... Please be careful of falling objects.29

28Incidentally, you can find the source code for this illustration in Examples-Tutorial.nb.
29And especially anchors.

34

Table 3.2 Options for controlling attached labels (extracted from Tables 8.8 and 8.10).
Option Default
XLabel None The label contents.
XLabelPosition Automatic Additional positioning argument to use when gen-

erating the label anchor.

XTextOffset Automatic The offset of the anchor within the text rectangle.
XTextOrientation Automatic The text orientation, or rotation about the anchor.
XTextRectify True Whether or not to automatically rectify text which

would, otherwise, appear inverted.
XTextNudge None An additional arbitrary displacement of the text, in

printer’s points.
TextBuffer None An additional displacement of the text, in printer’s

points, in the direction from the anchor point to the
text center.

XShowText,
XTextColor,. . .,
XFontFamily,. . .,
XTextBackground,. . .

Default As shown above in Table 3.1, but now applying just
to one label.

Please check back in a few months for a more detailed tutorial. In the meantime, please see Sec. 8.2 of
the reference manual for attached labels, Secs. ??–8.1.8 for tuning the formatting and positioning of labels,
and Sec. 7.3 of the reference manual for more on text offsets. You can see Sec. 7.1.2 of the reference manual
for the full story on anchors. Although the syntax has changed,

3.2.6 Neatening up the geometry using anchors [STUB]

3.2.7 Interlude: Styles [STUB]

3.2.8 The final figure
The final code for the figure, which puts all these ingredients together, can be found in
Examples-Tutorial.nb.

35

3.3 Tutorial 3: Getting started with data plots and legends
[STUB]

Coming soon. . . For now, there is a mini-tutorial at the beginning of the file Examples-Plots.nb, to
get you started with data plots and legends — see the example entitled “Mini-tutorial: An introduction to
data plotting”. This notebook also contains several further examples, including code for panels (c) and (d)
from the cover of this guide.

Then, please read Sec. 15 of the reference manual. This provides a thorough discussion of data plot-
ting — not just the syntax, but also the concepts, and how to go about doing it.

36

4 Topical discussions

4.1 Basic drawing objects [STUB]
Coming soon. . . This will be a more detailed discussion of the shapes which were introduced in the tu-
torials. For now, please see Sec. 11 of the reference manual. You may also find the section on “General
drawing shapes” of interest, on pages 19–22 of the old LevelScheme user’s guide (Version 3.53) — please
see LevelSchemeGuide.pdf, which has been included with this SciDraw distribution.

4.2 Multipanel figures [STUB]
Coming soon. . . For now, please see Sec. 10 of the reference manual, as well as the examples in
Examples-Plots.nb.

4.3 Formatting text for labels [STUB]
Coming soon. . . For now, you can refer to the section on “Text formatting” on page 43 of the old Lev-
elScheme user’s guide (Version 3.53) — please see LevelSchemeGuide.pdf, which has been included
with this SciDraw distribution.

4.4 Generating EPS/PDF output for publication [STUB]
Coming soon. . . For now, please refer to Section VIII on page 47 of the old LevelScheme user’s guide
(Version 3.53) — please see LevelSchemeGuide.pdf, which has been included with this SciDraw
distribution.

4.5 Level schemes
This section provides a practical overview of the tools at your disposal for drawing level schemes, or level
energy diagrams. The source code for all the examples in this section, as well some as more sophisticated
examples of level schemes, may be found in Examples-Schemes.nb. Please see also Sec. 14 of the
reference manual for a complete description of the syntax and options.

4.5.1 Note for LevelScheme users
If you have previously drawn level schemes with LevelScheme, you will find that the object names and syn-
tax carry over more or less directly to SciDraw. Therefore, a level scheme you have drawn with LevelScheme
should be useable with SciDraw after straightforward modifications. The main differences are:

(1) First off, you will need to put your diagram contents in a FigurePanel. You will need to set
Frame->False for the FigurePanel, if you do not want a frame, and convert any ImageSize option
for Figure (in printer’s points) to a CanvasSize option (in inches, so just divide by 72!).

(2) Level names, which in LevelScheme were given as the first argument to Lev[name,. . .] now follow
the standard object naming scheme, discussed in Sec. 6 of the reference manual. The level name should
therefore be given as Lev[[name]][. . .].

(3) Option names for labels, colors, etc., must be changed to the new standardized (and less crypti-
cally abbreviated) option names in SciDraw (Sec. 8). For instance, LevelScheme’s LabL option becomes
SciDraw’s LeftLabel option. You will need to take care as to what is meant by the “left” and “right” side

37

of a transition arrow. This is generally the opposite sense from what it was in LevelScheme, for the reasons
discussed below — the basic idea was presented in Sec. 3.2.4.

(4) If you included labels, shapes, or other annotation in your figure, the LevelScheme objects must be
replaced by the new SciDraw objects. For instance, LevelScheme’s ManualLabel and ScaledLabel
are subsumed by SciDraw’s FigLabel, or SchemeCircle becomes FigCircle, with some possible
differences in syntax.

4.5.2 Levels, extensions, and connectors
Levels are drawn with the Lev object. There are also auxiliary objects ExtensionLine and Connector
for drawing extension lines and connectors, and a special type of label BandLabelwhich can be convenient
for labeling rotational bands. These objects are shown here in Table 4.2.1

Table 4.1 Levels, extension lines, and connectors (extracted from Table 14.1).
Lev[x1,x2,E] Generates a level.
ExtensionLine[level,side,dx] Generates an extension line to a level.
Connector[level1,level2] Generates a connector line between levels.
BandLabel[level,text] Generates a “band” label beneath the given level.

Each specification of a level with Lev includes left and right endpoint coordinates (i.e., giving the
horizontal span) and an energy coordinate (i.e., giving the vertical position). The level can also be given an
object name. This is usually just a string, but it can also be a more general Mathematica expression — see
Sec. 6 of the reference manual for guidelines. The name does not affect the appearance of the level itself.
Rather, it is used later to refer back to the level, when we want to draw extension lines, transitions, etc.,
which connect to the level.2

Figure@

FigurePanel@

8

SetOptions@Lev, LineThickness → 3D;

LevP"lev0"T@0, 1, 0, RightLabel → 0D;

LevP"lev100"T@1, 2, 100, RightLabel → 100D;

<,

PlotRange → 880, 2<, 8−50, 200<<, ExtendRange → Automatic, Frame → False

D,

CanvasSize → 86, 2<

D

0

100

The actual left and right end points of the level are indented from the nominal left and right end coordi-
nates x1 and x2, by an amount controlled by the option Margin. By default, Margin->0.1. This allows

1See also sections Secs. 14.1–14.4 of the reference manual.
2In fact, I find it a good idea to habitually give levels names right when I first define them, so I do not have to go

back and add names later if and when I decide to draw annotations.

38

end points to be specified in round numbers, e.g., levels can be specified as extending from 1 to 2 and from
2 to 3, while the margin ensures that the ends of the levels do not actually bump into each other. It may be
easier to see how this works if we make our coordinate system more readily apparent, for the moment, by
turning on the frame and tick marks.

0

100

0 1 2

M
ar
g
in

M
ar
g
in

M
ar
g
in

M
ar
g
in

-50

0

50

100

150

200

0.0 0.5 1.0 1.5 2.0

Levels can have left, center, and right labels. Specifying the special option value
XLabel->Automatic causes the level energy to be used as the text of that label. Thus, energy la-
bels can be created on all levels simply by invoking SetOptions[Lev,XLabel->Automatic] and
can later be removed as easily. When Mathematica displays real numbers, it removes all trailing zeros after
the decimal point, regardless of how the number was originally entered. Thus, for instance, a level energy
entered as 0.00 would be truncated to “0.” in the energy label, which is undesirable. To circumvent this,
we give the energy argument to Lev as a string, surrounded by quotation marks. Lev will extract the nu-
merical value for use as the vertical coordinate of the level but will still use the string verbatim as the text
for energy labels.

In level schemes with closely-spaced levels, it is sometimes necessary to raise or lower the end seg-
ments of levels to make room for text labels. This gives levels which appear to have “gull wings”. Gull
wings can be created by specifying a nonzero value for the option WingHeight, postive for elevated
wings and negative for lowered wings.3 The dimensions of the gull wings can be customized using the
options WingSlopeWidth, WingTipWidth, and MakeWing (see Table 14.2 of the reference manual
for details).

Here is an illustration of automatic energy labels and gull wings:

SetOptions@Lev, RightLabel → Automatic, RightTextOffset → BottomRightD;

LevP"lev0"T@0, 1, "0.0"D;

LevP"lev100"T@0, 1, "100.1", WingHeight → −5D;

LevP"lev105"T@0, 1, "105.3", WingHeight → +5D;

0.0

100.1

105.3

Alternatively, a fixed number of decimal digits may be obtained by setting the option
DecimalDigits.4

3Incidentally, we are borrowing the “gull wing” terminology from aeronautics. Technically, if WingHeight is
negative, the level has “inverted gull wings”, the Corsair providing the canonical example. . .

4Actually, it is even possible to specify a custom labeling function, as described in Sec. 14.1 of the reference

39

SetOptions@Lev, RightLabel → Automatic,

DecimalDigits → 1, RightTextOffset → BottomRightD;

LevP"lev0"T@0, 1, 0D;

LevP"lev100"T@0, 1, 100.1, WingHeight → −5D;

LevP"lev105"T@0, 1, 105.3, WingHeight → +5D;

Extension lines are attached to an existing level using the ExtensionLine object. They extend the
level by a specified horizontal length to the left or right.

SetOptions@ExtensionLine, LineDashing → 4D;

ExtensionLine@"lev0", Right, 0.5D;

0.0

Connector lines between levels are drawn with the Connector object. Just like other objects,
Connector objects can have attached labels.

SetOptions@Connector, LineDashing → 4,

LineColor → Firebrick, TextBackground → AutomaticD;

Connector@"lev0", "lev100", CenterLabel → Row@8textit@"T"D, "=0"<DD;

0

100

Finally, we illustrate the use of BandLabel[level,text]. This example also provides an illus-
tration of using Do loops to automate the drawing a level scheme. Notice the shorthand function
LevelLabel[{J,i,P}] for generating a spin-parity label JP

i . Here we just show the code for one band —
see Examples-Schemes.nb for the full code.

H∗ ground state K=0 band, with energies from rotational formula ∗L

Do@

LevP8"lev", J, 1<T@0, 1, J ∗ HJ + 1L ê 6 ∗ 100, LeftLabel → LevelLabel@8J, 1, +1<DD,

8J, 0, 6, 2<

D;

BandLabel@8"lev", 0, 1<, Row@8textit@"K"D, "=0"<DD;

01
+

21
+

41
+

61
+

K=0

22
+

K=2

100
X

manual.

40

4.5.3 Transition arrows
Transition arrows within a level scheme are drawn using the Trans object, which is modeled on FigArrow
but is specially tailored for drawing transition arrows. All the basic principles of using FigArrow carry
over to Trans.5 The difference lies in how the endpoints are specified, as shown here in Table 4.2.

Table 4.2 Transition arrows (extracted from Table 14.1).
Trans[level1,level2]
Trans[level1,pos1,level2,pos2]

Generates a transition arrow between levels.

Let us also summarize the principal options for controlling the appearance of a Trans arrow (the style,
width, arrowhead properties, and geometry), as shown here in Table 4.3. Except for the last two, these
options are taken from FigArrow.

Table 4.3 The principal options for arrow geometry (extracted from Tables 11.4 and 14.9).
Option Default
ArrowType "Line" Arrow type (outline and fill geometry).
Width 5 Arrow shaft width, in printer’s points.
ShowHead True Whether or not to draw arrowhead at head.
HeadLength 6 Length of arrowhead at head, in printer’s points.
HeadLip 3 Extension of arrowhead beyond shaft, on each side,

at head, in printer’s points.
ShowTail, . . . Similarly for the tail.

TailFlush True Whether or not shaft tail should be flush to the level
(default is False for FigArrow).

EndPositions 0.5 Horizontal positions of the arrow endpoints, if not
given as arguments (Trans only).

IntermediatePoints None Points through which the arrow should pass along
the way (Trans only).

The syntax Trans[level1,pos1,level2,pos2] draws a transition arrow starting a horizontal distance
pos1 from the left end of level1 and ending a horizontal distance pos2 from the left end of level2. The distance
is calculated from the nominal left end of the level, ignoring the margins, rather than from the visible end
point. This simplifies the mental arithmetic required for positioning. For instance, an arrow starting from
the middle of a level which nominally extends from 0 to 1 can be obtained simply by specifying a position
0.5.

Trans@"lev200", 0.5, "lev0", 0.5, Width → 20D;

Trans@"lev100", 0.5, "lev0", 0.9, Width → 10D;

5Therefore, you will want to see the reference manual sections for both FigArrow (Sec. 11.3) and Trans
(Sec. 14.5) for further information — and these will refer you back to FigLine (Sec. 11.1) for some of the ba-
sic properties.

41

0

100

200

If either pos1 or pos2 is specified as Automatic, the arrow is made vertical, and its horizontal position
determined by whichever coordinate is not specified as Automatic. This is especially useful when it is
desired that the arrow should remain vertical even though one or both of the levels might need to be moved
horizontally as the level scheme is edited.6

Trans@"lev200", 0.5, "lev0", Automatic, Width → 20D; H∗ note use of Automatic ∗L

Trans@"lev100", 0.5, "lev0", 0.9, Width → 10D;

The abbreviated form Trans[level1,level2] takes its starting and ending positions from the option
EndPositions->{pos1,pos2}, or simply EndPositions->pos if both positions are the same. This
is useful if many transition arrows are to be drawn with the same horizontal start and end positions, as is
often the case for the transitions within a band or between two bands. Then EndPositions can simply
be specified once using SetOptions, or via a style, and it will apply to all the transitions.

Trans@"lev200", "lev0", Width → 20D; H∗ note default EndPositions→0.5 ∗L

Trans@"lev100", "lev0", EndPositions → 80.5, 0.9<, Width → 10D;

Often it is necessary to introduce one or more “kinks” into a transition arrow, i.e., to draw
the arrow as a multi-segment curve. The first and last points of the arrow are specified as usual
by giving the level names, while the intermediate points are specified as a list, via the option
IntermediatePoints->{p2,. . .,pn−1}. Most simply, each point may be specified as an ordinary
coordinate pair {x,y}. However, more commonly, you will find it convenient to specify points rel-
ative to the head or tail of the arrow, either in ordinary coordinates or canvas coordinates (printer’s
points) — namely, FromHead[{x,y}], FromHead[Canvas[{xc,yc}]], FromTail[{x,y}], or
FromTail[Canvas[{xc,yc}]].7 For example:

Trans@

"leva", "levb",

IntermediatePoints → 8FromTail@Canvas@820, 20<DD, FromHead@Canvas@8−20, 20<DD<,

RightLabel → 100

D;

100

As another example, intermediate points are needed in beta decay diagrams.

6Without the Automatic value, a new value for pos1 or pos2 would have to be entered manually each time the
left end of either level moved.

7These intermediate points fall into the category of “points along a curve” — see the discussion in Sec. 7.2.1 of the
reference manual.

42

SetOptions@Lev, Margin → 0.2D;

SetOptions@Trans,

EndPositions → 80.2, 0.8<,

IntermediatePoints → 8FromTail@8−0.10, 0<D, FromHead@8+0.30, 0<D<,

HeadLength → 5, HeadLip → 2,

Color → Firebrick, TextBackground → Automatic, TextOrientation → Horizontal,

CenterTextOffset → Right, H∗ for right alignment of labels ∗L

CenterLabelPosition → 8−1, 0.2<

H∗ for label at fraction 0.2 into last segment −− see below ∗L

D;

H∗ ... levels defined here... ∗L

Trans@8"parent", 0<, 8"daughter", 0<, CenterLabel → 100D;

Trans@8"parent", 0<, 8"daughter", 40<, CenterLabel → 80D;

1
+

0

1
+

40

0
+

0

100

80

Arrows can be drawn in several different styles, selected by the option ArrowType. An arrow of type
"Line" has a single shaft, and an arrowhead constructed from line segments, the lengths and angles of
which are customizable. An arrow of type "DoubleLine" is similar but has two lines in its shaft. The
area between the lines can be shaded as well. Note that the default color for the fill is the same as for the
line, which would leave the lines indistinguishable from the fill, defeating the point of having multiple lines.
Thus, in practice, "DoubleLine" is almost always used with either a separate FillColor option or
with ShowFill->False. An arrow of type "Block" is drawn as a polygon with both an outline and
fill. An arrow of type "Squiggle" has a sinusoidal squiggle for its shaft. Note that the quotation marks in
the names of the arrow types are important — these option values are strings, not symbols. These styles —
and the arrow geometry parameters for each — are illustrated in the following.

"Line" "DoubleLine" "Block" "Squiggle"

H
ea
d
L
ip

H
ea
d
L
en
g
th

W
id
th

H
ea
d
L
ip

H
ea
d
L
en
g
th

W
id
th

H
ea
d
L
ip

H
ea
d
L
en
g
th

W
id
th

H
ea
d
L
ip

H
ea
d
L
en
g
th

Some of the possible variations on transition arrows are shown below. As already noted, an arrow can
have “kinks”, or multiple segments, specified by IntermediatePoints — we illustrate what that looks
like for different arrow types here. An arrow can be “double headed” or even have an arrowhead only on
its tail, as controlled by the ShowHead and ShowTail options. The tail of a double-line or block arrow

43

is normally drawn flush against the starting level, with the default TailFlush->True, but this may be
overridden by setting TailFlush->False.

Bent arrow Double-headed

arrow
Flush… or not

Arrows can have labels attached to their left, center, right, head, or tail. The principle is the same as for
attaching labels to any curve. Recall, from Sec. 3.2.4, that the “left” and “right” sides are defined relative
to the curve, not from your viewpoint looking at the page. If an arrow happens to be pointing upward (as
for excitation transitions in level schemes), then these labels will, happily, also be on the left and right sides
of the page, respectively. But, if an arrow is pointing downward (as for decay transitions), do note that the
Left label will be to the right side of the page, and vice versa. If you are drawing a decay scheme, where
all the arrows point more or less downward, this may take a little getting used to.8 It is clearest if we just
look at a couple of examples.

C
en
te
r

L
ef
t

R
ig
h
t

Center

Left

Right

Center

Left

Right C
en
te
r

L
ef
t

R
ig
h
t

For the Left, Center, and Right labels, the position of the label along the arrow shaft is controlled
with the option XLabelPosition. If a simple numerical value is given for the option, this specifies the
position as a fraction of the distance from the tail to the head. The labels are by default at 0.5, the midpoint
of the arrow. More sophisticated positioning specifications, e.g., in terms of distances in printer’s points
from the tail or head, are available as well (see the summary of anchors for FigLine in Table 11.3). Here,
we just note that, for arrows with more than one segment, the labels may appear on any of the segments,
as specified by a position given as {segment,pos}, for instance, {2,0.5} for the middle of the second
segment. Segments are numbered 1, 2, . . . starting from the tail of the arrow (or, alternatively, −1, −2, . . .
backwards from the head of the arrow), as illustrated below.

2

-2

If the XTextOrientation option for a label is specified as Automatic (the default), the label will
be aligned flush along the arrow shaft, giving a very neat appearance. Normally, the label will be flipped so

8Users of LevelScheme will notice that this is a change in convention. The notation used in LevelScheme, for
historical reasons, was narrowly focused on decay schemes. SciDraw, on the other hand, needs to maintain a useable
notation for labeling arrows and curves in general. Sorry, gamma ray spectroscopists. You should be able to adapt to
this quickly. Or you can always switch to Coulomb excitation.

44

that it is right side up. If a label “upside down” relative to this angling is prefered, as it occasionally might
be for near-vertical arrows, the option can be overriden with the value Inverse. Ordinary horizontal or
vertical labels can be specified, as usual, with the Horizontal and Vertical option values. You will
likely also have to adjust the XTextOffset option at the same time to get a satisfactory result, as for the
rightmost arrow shown below.

H∗ rightmost transition arrow ∗L

Trans @

"lev100", "lev0", EndPositions → 80.7, 0.3 <,

CenterLabel −> "Automatic", CenterLabelPosition → 0.4,

TailLabel → "Vertical", TailTextOrientation → Vertical, TailTextOffset → Left,

H∗ that's the left end of the text ∗before ∗ rotation ! ∗L

LeftLabel → "Horizontal",

LeftTextOrientation → Horizontal, LeftTextOffset → TopLeft

D;

Horizontal

V
e
rt
ic
a
l

Some special definitions are provided to facilitate the drawing of decay schemes in the classic
style for such schemes. Such schemes consist of a stacked series of levels, connected by an array of
vertical arrows which are equally spaced horizontally and grouped by starting level.9 The command
AutoLevelInit[x′,dx,Dx] initializes autospacing, specifying horizontal coordinate x′ for the first
transition, spacing dx between transitions from the same level, and spacing Dx between groups of tran-
sitions from different levels. Then AutoLevel[level1] selects a new starting level for transitions, and
AutoTrans[level2] draws a transition to the designated ending level.

The following example illustrates the use of these decay scheme generation tools. Note that negative
spacings Dx are specified in AutoLevelInit to draw the transitions successively from right to left. The
transition labels are specified with the usual label options for Trans, e.g., TailLabel->label. It is
usually desirable to set the option TextBackground->Automatic for Trans, to create a white-out
box behind each label, blocking out any higher-lying levels behind the label. You will usually want to
expand this box to extend a little beyond the text itself, with the TextMargin option. To prevent this box
from cutting into the level line of the level from which the transition originates, the label can be nudged
upwards, with the TextNudge option.

9See Sec. 14.6 of the reference manual.

45

H∗ autospaced transitions ∗L

SetOptions@Trans, TextBackground → Automatic, TextMargin → 1, TextNudge → 2D;

AutoLevelInit@0.85, −0.04, −0.08D;

AutoLevel@"lev121"D;

AutoTrans@"lev0", TailLabel → "121"D;

AutoLevel@"lev366"D;

AutoTrans@"lev121", TailLabel → "244"D;

AutoLevel@"lev684"D;

AutoTrans@"lev121", TailLabel → "562"D;

AutoTrans@"lev0", TailLabel → "684", LineColor → Firebrick, LineDashing → 4D;

AutoLevel@"lev706"D;

AutoTrans@"lev366", TailLabel → "340"D;

AutoLevel@"lev810"D;

AutoTrans@"lev684", TailLabel → "125", LineColor → FirebrickD;

AutoTrans@"lev366", TailLabel → "443"D;

AutoTrans@"lev121", TailLabel → "688"D;

AutoTrans@"lev0", TailLabel → "810"D;

AutoLevel@"lev963"D;

AutoTrans@"lev810", TailLabel → "152", LineColor → UltramarineD;

AutoTrans@"lev684", TailLabel → "278", LineColor → UltramarineD;

AutoTrans@"lev121", TailLabel → "841", LineColor → UltramarineD;

AutoTrans@"lev0", TailLabel → "963", LineColor → UltramarineD;

0
+

0

2
+

121

4
+

366

0
+

684

6
+

706

2
+

810

1
-

963

1
2
1

2
4
4

5
6
2

6
8
4

3
4
0

1
2
5

4
4
3

6
8
8

8
1
0

1
5
2

2
7
8

8
4
1

9
6
3

46

Part II

Reference manual

47

5 Setting up the canvas with Figure

Table 5.1 The basic figure display command.
Figure[body] Constructs and displays a figure, from the com-

mands in body.

Description. The Figure command sets up the canvas on which a figure is drawn, as introduced in
Sec. 3.1.2 of the user’s guide.

Arguments. Figure takes just a single argument — the figure body, i.e., the Mathematica commands
which generate the figure contents — as indicated in Table 5.1. For a more complete technical discussion,
see the Note on panel body syntax in Sec. 10.1.

Table 5.2 Options for Figure.
Option Default
CanvasSize {6,4.25} Dimensions of the main canvas area.
CanvasMargin 1 Additional margin around the main canvas area.
CanvasUnits Inch Length unit for the CanvasSize and

CanvasMargin options.
Style None Style or list of styles applied to Figure and to all

objects within it.
Background None Background color for the entire canvas.
CanvasFrame False Whether or not to draw canvas border lines to aid

the drawing process.

Options. The options for Figure are summarized in Table 5.3.

CanvasSize. The CanvasSize option specifies the {width,height} dimensions of the main canvas
area, as defined in Sec. 3.1.2, in the units given by CanvasUnits.

CanvasMargin. The CanvasMargin option specifies the size of the margin around the main can-
vas area, as defined in Sec. ??, in the units given by CanvasUnits. The margin may simply be given
as a single number d (same on all sides), {dx,dy} (different for horizontal and vertical directions), or
{{dL,dR},{dB,dT}} (different for left, right, bottom, and top).

CanvasUnits. The CanvasUnits option defines the unit for the CanvasSize and
CanvasMargin options. This may be any length unit defined in the Mathematica Units package
(see Units/tutorial/Units). The units Inch (default), Centimeter, or Point are likely to be most
useful for figure preparation.

Style. The Style option specifies a style (or list of styles) which should be applied to the figure. See
Sec. 9 for further discussion of styles.

Background. The Background option sets a background color for the entire canvas. However, note
that this is not typically the effect you would be after. You will more likely instead prefer just to set a
background for the panel or panels within the figure, through the Background option to FigurePanel
(Sec. 10.1).

CanvasFrame. With CanvasFrame->True, a dashed line is drawn around the main canvas area
(excluding margins) and a solid line around the full canvas (including margins). This can help you to judge

48

the available drawing area as you arrange the elements of your figure. This is simply a visual aid during the
design process and is not intended for use in the final production version of the figure.

Table 5.3 Additional options for Figure, for automatic exporting.
Option Default
Export False Whether or not to generate exported file.
ExportDirectory Automatic Directory in which to write exported file, or

Automatic for current working directory.
ExportFileName "figure-*.eps"File name or file name pattern for exported file.
ExportFormat "EPS" Export format.
ExportOptions {} Additional options for Export.
ExportStamp See text. Expression giving unique file stamp.

Automatic export options. Figure can automatically export each figure as it draws it. This
is convenient especially if one is automatically generating a large number of figures, e.g., for
an animation. The option value Export->True enables automatic exporting. The option
ExportFileName specifies a string which serves as a template for the filename. A * in the
string indicates where a unique identifier should be inserted, e.g., "figure-*.eps". The op-
tion ExportDirectory may be used to indicates the directory into which exporting should oc-
cur (e.g., ExportDirectory->"c:/work/manuscript"), if this is not already specified in
ExportFileName. The ExportFormat and ExportOptions options specify the export format
argument and any additional options for the Export command (see ref/Export). By default the unique
identifier provided by Figure is a timestamp, but the ExportStamp argument provides a hook for re-
placing this default timestamp. This expression must be wrapped in Hold, for technical reasons. The de-
fault timestamp is generated with Hold[DateString["YearShort", "Month", "Day", "-",
"Hour24", "Minute", "Second", "-", "Millisecond"]] (see ref/DateString).

49

6 Objects
Syntax. The name of an object is given as an optional first argument, which may be delimited either by
doubled brackets, as [[name]], or by the “double bracket” special characters, as [[name]].1 These latter
double bracket characters are entered as Esc -[-[- Esc and Esc -]-]- Esc , respectively. If no optional
argument is given, the object has no name (or, rather, a dummy name is provided internally by SciDraw for
internal use). The generic syntax for SciDraw objects is thus

object[arguments]

or

object[[name]][arguments]

Names may be reused within a single figure. However, stored information for the latter instance of a given
name overwrites any information stored for the earlier instance.

Naming convention. It is strongly suggested that object names be chosen consistently as strings rather
than as Mathematica symbols or other types of Mathematica expressions, e.g., "Node" rather than Node.2

However, often you may find it useful to include data in the object name, especially if you are using Math-
ematica programming constructs such as Table to automate your work. In this case, the recommended
form for the name is as a list, starting with a descriptive string as the first entry, followed by the data, e.g.,
{"Node",1}, {"Node",2}, . . .

1See ref/character/LeftDoubleBracket. The double bracket syntax should be familiar from Mathematica’s syntax
for indexing elements of lists (see ref/Part). In fact, the present syntax for object names was more or less dictated
by the limited notational possibilities available within Mathematica’s syntax — here we have actually coopted Math-
ematica’s double bracket notation for Part, for an entirely different purpose.

2If symbols are used, and values are accidentally assigned to those symbols elsewhere in your work, this confuses
the naming scheme. Alternatively, if values are not assigned, all the names will be highlighted in blue by the front end,
as undefined names, defeating the purpose of this highlighting as a warning sign to you against typographical or other
naming errors.

50

7 Arguments involving coordinates

7.1 Points and anchors
Many (in fact, almost all) of the commands to draw figure objects in SciDraw require that you describe the
location and shape of the object in terms of points — for instance, the points along a curve (for FigLine),
the starting and ending points of an arrow (for FigArrow), or the position of a label (for FigLabel).
SciDraw expands upon the concept of a point by introducing the idea of an anchor.1 A point consists
simply of (x,y) position information. An anchor contains not only an (x,y) position but also some further
information needed to control the positioning and orientation of a text label — an offset and an orientation.

Interchangeability of points and anchors. Although for some purposes only the coordinates of a
point are needed (e.g., for points along a curve given to FigLine), and in others the full anchor information
is needed (e.g., for positioning and orienting the text of a label), an anchor may always be given where a
point is expected as an argument, and vice versa. That is, if a point is expected for the argument, an anchor
will be accepted instead, and the offset and orientation information will just be thrown away as irrelevant.
Conversely, if an anchor is expected for the argument, a point will be accepted instead, and SciDraw will just
understand you to mean the default offset {0,0} (text centered on the point) and orientation 0 (horizontal
text) for the remaining information.

7.1.1 Points

Table 7.1 Ways of specifying coordinates for points.
{x,y} A point specified by its xy coordinates, in the current

panel’s coordinate system.
Scaled[{xs,ys}] A point specified by its scaled coordinates, i.e., its

position as fraction of the way across the panel.
Canvas[{xc,yc}] A point specified by its coordinates in printer’s

points on the canvas.
{x,Scaled[ys]}], . . . Hybrid forms are also accepted (see text).

The possible ways of specifying the coordinates2 for a point as an argument to a figure object are summarized
in Table. 7.1.

Ordinary xy coordinates. Typically, you will just give the point as an (x,y) pair, written as {x,y}. This
(x,y) pair will be interpreted in the context of the current coordinate system.

Scaled coordinates. Mathematica defines so-called scaled coordinates (see ref/Scaled) which run from
{0,0} at the lower left corner of a plot to {1,1} at the upper right corner. A point in scaled coordinates is
given as Scaled[{xs,ys}]. SciDraw interprets scaled coordinates with respect to the current panel, rather
than the figure as a whole. Scaled coordinates are useful for specifying a position within the panel’s frame,
regardless of what PlotRange has been defined for the panel. For instance, if you want to put a label at
the top center of a panel, it would be nuisance (at best) for you to have to calculate the (x,y) coordinates of
this point and insert them as the coordinate argument to FigLabel — and then to have to go back and edit
these (x,y) coordinates if you ever change the panel’s PlotRange. Instead, you can easily and reliably
refer to the top center as Scaled[{0.5,1}].

1The concept of anchors in SciDraw is introduced in Sec. ?? of the user’s guide.
2The concepts of scaled and canvas coordinates in SciDraw are introduced in Sec. 3.1.4 of the user’s guide.

51

Canvas coordinates. Internally, SciDraw makes extensive use of canvas coordinates to determine posi-
tions. On the rare occasion you might want to refer a position directly on the figure canvas, this can be done
by specifying a point as Canvas[{xc,yc}]. However, from the user’s perspective, the primary application
is to specify displacements measured in printer’s points (for instance, see the discussion of RelativeTo
in Sec. 7.1.3) or the dimensions of objects (for instance, see the discussion of Radius in Sec. 11.4), where
the notation Canvas[{dx,dy}] indicates that these measurements are in printer’s points.

Hybrid coordinates. It is also possible to specify the coordinates {x,y} as a hybrid of these coordinate
systems. For instance, a coordinate specification of the form {x,Scaled[ys]}] is useful if you wish to
position a label or marker, say, at a given x value, but at the top or bottom of the figure, or a given fraction of
the way up the figure. For example, the point at horizontal coordinate value 0.1 and at the top of the figure
would be specified as {0.1,Scaled[1]}.

Individual coordinates (x or y). Sometime just a single coordinate — the horizontal position x
or vertical position y — is required by a figure object. For instance, a vertical rule is specified by
FigRule[Vertical,x,{y1,y2}]. In such cases, the coordinate may be specified according to a similar
scheme: the x coordinate itself, Scaled[xs] for a scaled position across the panel, or Canvas[xc] for a
canvas position. Moreover, instead of just the single coordinate, a point can be given, and the corresponding
x (or y) value will be extracted — this is particularly powerful in that it allows an anchor (Sec. 7.1.2) to be
given in place of an x or y position. Thus, various possibilities would be:

FigRule[Vertical,0.,{. . .}]; (* rule at x=0 *)
FigRule[Vertical,Scaled[0.5],{. . .}]; (* rule at middle of panel *)
FigRectangle[["R1"]][. . .]; (* here is rectangle "R1" *)
FigRule[Vertical,FigAnchor["R1",Left],{. . .}]; (* rule aligned with left edge of rectangle "R1" *)

7.1.2 Anchors

Table 7.2 Ways of specifying anchors.
FigAnchor[ob ject,name]
FigAnchor[ob ject,name,argument]

An anchor at position name on a previously-drawn
figure object ob ject, with an optional argument.

FigAnchor[point,{xo,yo},θ] An anchor constructed from a point p, an offset (op-
tional), and an angle (optional).

FigAnchor[anchor,{xo,yo},θ] An anchor constructed from an existing anchor a, an
new value for the offset (optional), and a new value
for the angle (optional).

The possible ways of generating an anchor to use as an argument to a figure object are summarized in
Table. 7.2.

Anchor generated from a figure object. Most often, you will generate an anchor automatically from
an existing figure object, as FigAnchor[ob ject,name,argument]. Here name, represents a named po-
sition. The possibilities vary depending on the type of figure object and are documented for each different
object as part of its description, e.g., Table 11.11 for FigRectangle. In general, name will be a descrip-
tive name for the anchor’s location on the object, such as Left, Right, Tail, or Head,3 e.g.,

3All of the anchor names which you are likely to use in practice (like the examples Left, Right, Tail, and Head
just given) are Mathematica symbols. However, in the documentation you will see a few more obscure examples,
meant primarily for SciDraw’s internal use, which are strings (like "PanelLetter"). These have been left as

52

FigAnchor[obj,Left]

An additional argument might also be accepted or required. For instance, for a FigRectangle, we may
also give a number indicating where on the Left side, e.g.,

FigAnchor[obj,Left,0.25]

Using and saving anchors. When an anchor is required as an argument to a figure object, you can
either give the anchor itself directly as the argument, or you can define the anchor as an object with a name
and refer to that name. (This name is not to be confused with the named positions, such as Left or Tail
used above.) Let us consider an example of each approach. Suppose obj is the name of some object. Then
a line starting at the left side of that object could either be drawn using an anchor directly as

FigLine[{FigAnchor[obj,Left],. . .}];

Alternatively, we can first define the anchor as a named object (say, "a1")

FigAnchor[["a1"]][obj,Left];

and then use that name as the starting point for FigLine

FigLine[{"a1",. . .}];

Giving a name to the anchor, in this fashion, is convenient if you want to refer to the same anchor several
times, or if you want to keep your argument lists (here, the list of points for FigLine) short and simple,
i.e., not containing any verbose calls to FigAnchor[. . .].

Generating an anchor from coordinates. An anchor can also be generated by specifying all
three components of the anchor — the point (x,y), offset (xo,yo), and orientation θ — explicitly, as
FigAnchor[point,{xo,yo},θ]. Here the point can be given in any of the forms described in Table 7.1.
The offset and orientation arguments are both optional, and will be taken as {0,0} and 0, respectively, if
omitted. From the user’s perspective, the most likely use is to name a point for future use in positioning
other objects,4 for instance,

FigAnchor[["center"]][{0.352,0.246}]

Comment: Why might you want to give points a name, instead of refering to them directly by their co-
ordinates? Or perhaps saving the coordinate specification in a variable, e.g., Pcenter={0.352,0.246}
and then refering to that variable name as an argument? A saved anchor stays fixed on the canvas even if the
meanings of coordinates change — say, when you enter a new panel or apply WithOrigin (Sec. 10.5).
So, for instance, if you wish to draw connectors or arrows between different panels of the same figure, you
can use saved anchors as the endpoints.

Generating an anchor from another anchor. For completeness, we note that you can also generate
a new anchor from an existing anchor, as FigAnchor[anchor,{xo,yo},θ]. This can be useful if you
wish to override the values of the offset or orientation parameters given in anchor. If either the offset or
orientation argument is omitted, the value from anchor will be used.

strings to avoid unnecessarily adding new symbols (and thus the possibility of future name clashes) to the Mathematica
namespace.

4FigAnchor is heavily used for constructing anchors internally in SciDraw, when it generates the anchors as-
sociated with objects. But these uses are more technical, and you are only likely to encounter them if you become
involved with programming to add on new types of drawing objects for SciDraw.

53

Table 7.3 Functions for extracting information from existing anchors.
AnchorCoordinates[p] Returns the coordinates of the given anchor p, reex-

pressed in the current coordinate system.
AnchorAngle[p] Returns the orientation angle of a given anchor p.
AnchorOffset[p] Returns the offset information associated with a

given anchor p.
CanvasRayAngle[{p1,p2}] Returns the orientation angle of the ray between

points (or anchors) p1 and p2.

Extracting information from an anchor. The functions AnchorCoordinates, AnchorAngle,
and AnchorOffset may be used to extract information from an existing anchor, as summarized in Ta-
ble 7.3. (As usual, the argument p may also be a simple coordinate argument, in which case it is upgraded to
an anchor as described above. The function CanvasRayAngle[{p1,p2}] returns the angle between two
points on the canvas, which is in general not what would be obtained by naively feeding their mathematical
coordinates into ArcTan, unless the scaling of the x and y axes on the canvas is identical.

Table 7.4 Visualizing anchors.
FigAnchorMarker[anchor] Visually displays the point (as a dot) and orientation

(as a line) of the given anchor.

Visualizing anchors. FigAnchorMarker[p] displays the point (as a dot) and orientation (as a line)
of the given anchor p. Drawing a FigAnchorMarker (Table 7.4) can be useful, as you are preparing a
figure, for understanding what an anchor really represents — especially if the results in the figure are not
agreeing with what you expect! FigAnchorMarker is meant purely as a visual aid or debugging tool
in preparing the figure. You would not normally include a FigAnchorMarker in your final figure. The
appearance of the FigAnchorMarker is controlled by all the usual options (PointSize, LineColor,
etc.) summarized in Sec. 8. The line length, in printer’s points, is controlled by the option Length.

7.1.3 Calculating new points or anchors

Table 7.5 Functions which generate new points or anchors from existing points or anchors.
RelativeTo[p,d1,d2,. . .] Returns a point (or anchor) obtained by starting

from p and moving by successive displacement vec-
tors d1, d2, . . .

AlongAnchor[p,dist] Returns a point obtained by starting from p and
moving a distance dist in printer’s points in the di-
rection given by the anchor’s orientation angle θ .

CentroidPoint[{p1,p2,. . .}] Returns a point at the centroid of points p1, p2,

Some functions for calculating new points (or anchors) from existing points (or anchors) are summarized in
Table 7.5.

RelativeTo. The RelativeTo function generates a new point by moving a given vector displace-
ment “relative to” a given point. (You can actually add several displacements d1, d2, . . .at once.) A displace-
ment may be given as {dx,dy}, Scaled[{dx,dy}], or Canvas[{dx,dy}], with meanings analogous
to those described for coordinate points in Table 7.1, or as None, which is equivalent to {0,0}. Thus, for
instance,

54

RelativeTo[{3.4,5.6},Canvas[{0,10}]]

starts from the coordinate point (3.4,5.6) in the current panel’s coordinate system and moves upward by 10
printer’s points. As another example, if "circle" is the name of an object,

RelativeTo[FigAnchor["circle",Right],Canvas[{10,0}]]

lies 10 printer’s points off its right hand side. Note that if RelativeTo is given an anchor as its argument,
the text offset and orientation information is preserved. RelativeTo[d,. . .] may therefore be thought of
as a “parallel displacement” of an anchor.

AlongAnchor. AlongAnchor[p,dist] is similar to RelativeTo, but it takes a distance rather
than a vector displacement as an argument, and it makes use of the anchor orientation angle θ to determine
the direction in which to move relative to the anchor. The distance dist is in printer’s points and may be
positive or negative (or zero). For example, if "arrow" is the name of an arrow, the following code would
draw a circle 10 printer’s points in front of the head of the arrow:

FigCircle[AlongAnchor[FigAnchor["arrow",Head],10]];

CentroidPoint. The CentroidPoint[{p1,p2,. . .}] function may be used with any set of one
or more points or anchors. Although this function accepts an arbitrary number of points, the most useful
case in practice is the midpoint of two points p1 and p2.

7.2 Curves
Several types of figure object take not just a single point as their argument but a list of two or more points,
representing a curve. Examples include FigLine[{p1,p2,. . .,pn}], FigPolygon[{p1,p2,. . .,pn}],
and FigArrow[{p1,p2,. . .,pn}] (described in detail in Sec. 11).

7.2.1 Points on curves
The discussion in Sec. 7, on how to specify points as arguments, still applies to the points in a curve speci-
fication {p1,p2,. . .,pn}. Thus, each of these points p1, p2, . . ., pn may be given simply as {x,y} or by any
of the more other ways of specifying a point in Table 7.1. They may also be given as anchors, in any of the
ways shown in Table 7.2. For example, if "r1" and "r2" are the names of rectangles, then a line from the
right side of the first to the left side of the second may be drawn as

FigLine[{FigAnchor["r1",Right],FigAnchor["r2",Left]}];

Alternatively, to illustrate the use of anchor names to specify points for a curve, we note that the same result
is obtained by

FigAnchor[["r1right"]]["r1",Right];
FigAnchor[["r2left"]]["r2",Left];
FigLine[{"r1right","r2left"}];

55

Table 7.6 Curve points specified relative to the head or tail of the curve.
FromTail[d1,d2,. . .] Returns a point obtained by starting from the tail

point of the curve and moving by one or more suc-
cessive displacement vectors d1, d2, . . .

FromTail[dist] Returns a point obtained by starting from the tail
point of the curve and, if this point has been given as
an anchor, moving a distance dist in printer’s points
along the direction given by the orientation angle θ

of this anchor.
FromHead[d1,d2,. . .] Returns a point obtained by starting from the head

point of the curve and moving by one or more suc-
cessive displacement vectors d1, d2, . . .

FromHead[dist] Returns a point obtained by starting from the head
point of the curve and, if this point has been given as
an anchor, moving a distance dist in printer’s points
along the direction given by the orientation angle θ

of this anchor.

For curves, the positions of points along a curve {p1,. . .,pn} can also be specified relative to the
tail of the curve (the first point p1) or the head of the curve (the last point pn), as summarized in Ta-
ble 7.6.5 This is really just a convenient way of accessing the functions RelativeTo or AlongAnchor
(Table 7.5), but with the starting point argument understood as the head or tail of the curve. Thus, for in-
stance FromTail[d1,d2,. . .] is really just a convenient shorthand for RelativeTo[p1,d1,d2,. . .],
and FromTail[dist] a convenient shorthand for AlongAnchor[p1,dist].

Table 7.7 Options affecting the positions of the first and last points, for figure objects which take
a curve as an argument.

Option Default
TailRecess None Distance, in printer’s points, by which the actual tail

point should be recessed from the nominal tail point
p1.

HeadRecess None Distance, in printer’s points, by which the actual
head point should be recessed from the nominal tail
point pn.

It is sometimes desirable to have the curve stop a bit short of its nominal end point, i.e., the end point
you give in the argument — for instance, if the “curve” represents an arrow pointing towards an object but
which you do not want to actually touch the object. Any figure object which takes a curve as its argument
therefore also takes the options TailRecess and HeadRecess, summarized in Table 7.7. These control
how far back the tail or head points should be recessed (i.e., backed off), in printer’s points, from the nominal
coordinates given. For instance, in the rectangle example earlier in this section

FigLine[
{FigAnchor["r1",Right],FigAnchor["r2",Left]},
TailRecess->10,HeadRecess->10

5Our convention of referring to p1 as the tail and pn as the head originates from the case, commonly occuring in
figures, in which the curve is for an arrow (Sec. 11.3).

56

];

provides a separation of 10 printer’s points between the ends of the line and sides of the rectangles.

7.2.2 Curves from graphics
SciDraw can also extract curves from Mathematica graphics, for instance, the output of Mathematica’s
plotting functions. Whenever a figure object requires a curve as its argument, you can give a Mathematica
Graphics or ContourGraphics expression in place of the argument.

Table 7.8 Option for extracting curves from graphics.
Option Default
Line 1 Which curve to extract from a graphics object, if it

contains several. With Line->Join, the curves
are all joined end to end.

Line. Simple graphics — for intance, a Plot of a single function — will often contain only a single
curve, in which case the result is unambiguous. However, more complicated graphical output will in general
contain several curves. For instance, a ContourPlot contains a separate curve for each contour line.
Which one will SciDraw extract and use as the curve argument for the figure object? This is controlled by
the remaining option Line shown in Table 7.8. You can either choose to extract the nth curve found in
the graphics, with Line->n (by default, the first curve is used), or you can choose to concatenate all these
curves into one long curve with Line->Join.

Table 7.9 Extracting curves from graphics.
GrabPoints[graphics] Extracts one or more curves from Mathematica

Graphics or ContourGraphics expressions.

GrabCurves. SciDraw provides a utility function GrabCurves[graphics], summarized in Ta-
ble 7.9, which extracts a curve from the given graphics, in the fashion just described, and simply returns a
list of the points. GrabCurves takes the same option Line->n or Line->Join just described above. It
also accepts the option value Line->All, in which case it produces a list of all the curves extracted from
graphics. This function is useful for debugging, e.g., figuring out which curve from graphics is the one you
want to use in your figure. It is also useful if you wish to use Mathematica to manipulate or transform the
list of curve points in some fashion before giving them as an argument to a figure object.

7.3 Relative positions within a rectangle (i.e., text offsets)
In various contexts, it is necessary to specify a “corner” or “side” of an object, or more generally to specify
a point within an object by its relative position across an object. The most notable context in which such
relative positions occur is in the positioning of text, when we specify the text anchor point’s position relative
to the label, termed the “offset”,6 via the TextOffset option for SciDraw labels. We therefore follow

6The Mathematica documentation actually uses the term “offset” with two entirely distinct meanings. For the
Text primative, the fractional position argument is denoted by offset (see ref/Text). This is not to be confused with
Mathematica’s Offset notation for indicating points by their offset in printer’s points relative to some starting point
(x,y) (see ref/Offset). The Offset notation is not needed by SciDraw since displacements in printer’s points can be
handled more systematically through reference to canvas coordinates with the Canvas notation.

57

the same convention as used in the Mathematica Text primative: the relative position is given as {xr,yr},
where the coordinates run from −1 to +1 across the face of the object, or from {-1,-1} at the lower left
corner to {+1,+1} at the upper right corner. The coordinates xr and yr need not be be constrained to the
range −1 to +1, that is, the relative position can lie beyond the edges of the object. Relative positions
are also occasionally used in other contexts, e.g., in designating anchor points for positioning and rotating
FigRectangle and FigCircle objects (Sec. 11.4) .

Table 7.10 Ways of specifying relative positions across an object.
{xr,yr} Relative position, with coordinates running from

−1 to +1 across the face of the object.

Center {0,0}
Left {-1,0}
Right {+1,0}
Bottom {0,-1}
Top {0,+1}
BottomLeft {-1,-1}
BottomRight {+1,-1}
TopLeft {-1,+1}
TopRight {+1,+1}

SciDraw also defines more descriptive aliases for the relative relative position values representing each
of the sides and corners, and for the center. These are summarized in Table 7.10.

7.4 Rectangular regions

Table 7.11 Ways of specifying rectangular regions.
{{x1,x2},{y1,y2}} A region specified by its left/right/bottom/top xy co-

ordinates, in the current panel’s coordinate system.
Scaled[{{x1s,x2s},{y1s,y2s}}] A region specified in terms of fractional distance

across the current panel, from {0,0} at the lower
left to {1,1} at the upper right.

Canvas[{{x1c,x2c},{y1c,y2c}}] A region specified by its coordinates in printer’s
points on the canvas.

All The entire region covered by the current panel,
equivalent to Scaled[{{0,1},{0,1}}]. If a
panel has not yet been defined, this refers to the
main area of the canvas.

Some figure objects take a rectangular region as an argument. For instance, FigurePanel draws a panel
covering a region (Sec. 10.1), and FigRectangle (Sec. 11.4) draws a rectangle covering a region. Re-
gions are specified in the form {{x1,x2},{y1,y2}}, following the usual form of the Mathematica PlotRange
option. The region may be given in ordinary xy coordinates (the coordinate system of the current panel), in
scaled coordinates (as a fraction of the current panel), or in canvas coordinates, as summarized in Table 7.11.
These three forms are directly analogous to the three ways of specifying a point in Table 7.1. The region
All refers to the entire region covered by the current panel.

58

Table 7.12 Functions which operate on regions or calculate new regions.
BoundingRegion[{p1,p2,. . .,ob j1,ob j2,. . .}]Returns a region specification which circumscribes

the given points (or anchors) p1, p2, . . ., and objects
ob j1, ob j2, . . .

AdjustRegion[region,options] Returns a new region obtained by displacing and/or
extending the given region.

RegionPoint[region,relative] Returns a point at a relative position across the given
region.

Furthermore, SciDraw provides a few functions for working with and modifying region specifications,
summarized in Table 7.12.

BoundingRegion. The BoundingRegion function returns a region specification which may be
used as the argument for figure objects. The region returned by BoundingRegion circumscribes the
given set of objects and/or points (or anchors). This is useful for drawing a rectangular box around them with
FigRectangle (Sec. 11.4) or a bracket which spans their width or height with FigBracket (Sec. 12.3).

AdjustRegion. Given a region specification, we may use AdjustRegion to obtain from it a dis-
placed region, or a region which has been extended outward (or contracted inward) on one or more of
its sides. AdjustRegion[region,RegionDisplacement->displacement] takes the given region
and obtains from it a new region specification, translated by the given displacement. This displacement
is specified as described for the displacement arguments to RelativeTo in Sec. 7.1.3. Similarly,
AdjustRegion[region,RegionExtension->extension] takes the given region and obtains from it a
new region specification, extended by the given extension. The extension may simply be given as an amount
to add in xy coordinates, in the form dd (same on all sides), {dx,dy} (different for horizontal and vertical di-
rections), or {{dx1,dx2},{dy1,dy2}} (different for left, right, bottom, and top). Alternatively, a fractional
change in the region is specified similarly as Scaled[. . .], or a distance to be added in printer’s points is
specified similarly as Canvas[. . .]. Either the displacement or the extension may be specified as None.

RegionPoint. The RegionPoint function returns a point specification which may be used as the
argument for figure objects. The point returned by RegionPoint[region,relative] is at the given relative
position within the given region. The argument relative may be given in any of the forms described in
Sec. 7.3, that is, as {xr,yr}, running from {-1,-1} at the lower left corner to {+1,+1} at the upper right
corner, or using any of the alternate names described in Table 7.10.

59

8 Options for figure objects

8.1 FigObject: Common default options
A basic set of options are shared by all figure objects. These are the options defined for FigObject.
Default values may be set through SetOptions[FigObject,. . .]. These are the values which will be
inherited by all other figure objects if their own value for the option is left as Inherited.

8.1.1 Overall appearance

Table 8.1 Options affecting the appearance of all parts of an object.
Option Default
Show True Whether or not the object should be visible.
Color Black Default color to be used for all parts of object,

unless overridden by LineColor, FillColor,
PointColor, TextColor, etc.

Opacity None Default opacity to be used for all parts of ob-
ject, unless overridden by LineOpacity,
FillOpacity, PointOpacity,
TextOpacity, etc.

Directives {} Additional graphics style primatives to apply to all
parts of the object.

Style None The style (or list of styles) from which all option
defaults should be taken.

As introduced in Sec. 3.2.2 of the user’s guide, some options affect the entire object, while others affect only
the outline, fill, or text — that is, if the object in question actually has an outline, fill, or text. The options
which affect the appearance of all parts of the object are summarized in Table 8.1.

Show. With Show->False, no graphical output is generated. For instance, this is regularly used with
FigurePanel. Even though the object is invisible, the geometric information (object location and di-
mensions) is still stored. Thus, Show->False may be useful for creating a “phantom” object, which can
provide an anchor as you are positioning other objects, or to hide objects in a figure which you might later
wish to show again in another version of the figure. Note that, even if Show->False is set for the ob-
ject as a whole, individual parts might actually be shown if this setting is overridden with the ShowLine,
ShowFill, etc., options described below.

Color. The color of the entire object (outline, fill, and text) may be set all at once with the option
Color. Colors are specified using either the standard Mathematica color names (Red, Blue, etc.) or
directives (GrayLevel[. . .], RGBColor[. . .], etc.) (see guide/Colors).

SciDraw also defines the much larger “legacy” set of color names, such as Moccasin and
Firebrick, which were available in earlier versions of Mathematica, prior to version 6. When SciDraw is
loaded, it displays a button labeled “View color palette” in the notebook. You can view a chart of the named
colors at any time by clicking on this button.

Furthermore, SciDraw accepts None as a color. Any part of an object which has color None is simply
not drawn, just as if Show were set to False. Note that, even if Color->None is set for the object as
a whole, individual parts might actually be shown if the LineColor, FillColor, etc., are specified as
described below.

60

Opacity. The opacity (or transparency, if you think in terms of glasses half empty) of the entire object
may be set with the option Opacity. This should be a number from 0 to 1, as described in ref/Opacity.
The default value, Opacity->None, perhaps slightly counterintuitively, means “opaque”, i.e., no opacity
setting for the object!1

Warning: Although it is tempting to use object transparency in your drawings, the Opacity option
should be used with extreme caution, especially in figures intended for publication. Transparency is not
supported in PostScript or PDF output. If you attempt to export a figure which has been drawn using object
transparency, Mathematica will likely fall back on rasterizing the entire figure (producing excessively large,
low-quality output, not suitable for rescaling in a paper or in presentation slides), or else Mathematica
will attempt to simulate transparency by breaking the graphics into small polygonal regions with different
shadings (again producing excessively large output), or else Mathematica might simply freeze up or crash.
So use transparency at your own peril. . .

Directives. The Directives option need not normally be used. It is provided so that, if new ver-
sions of Mathematica introduce new graphics style directives, they can immediately be used with SciDraw.

Style. The Style option specifies a style (or list of styles) which should be applied to the object. See
Sec. 9 for further discussion of styles.

8.1.2 Outline appearance

Table 8.2 Options affecting the object outline.
Option Default
ShowLine Default Whether or not the outline should be visible.
LineColor Default Color to be used for the outline.
LineOpacity Default Opacity to be used for the outline.
LineThickness 1 Line thickness to be used for the outline.
LineDashing None Dashing to be used for the outline.
LineCapForm None Cap form (whether or not line ends are rounded) to

be used for the outline.
LineJoinForm {"Miter",3.25}Line join style (mitering or beveling) to be used for

the outline.
LineDirectives {} Additional graphics style primatives to apply to the

outline.

Options which affect the outline of an object are summarized in Table 8.2.

ShowLine, LineColor, LineOpacity. The color (and opacity) for the outline can take the de-
fault values for the object as a whole, or they can alternatively be specified separately from the rest of
the object. The value Default for any of these options (ShowLine, LineColor, or LineOpacity)
means that the setting given by Show, Color, or Opacity (Table 8.1) for the object as a whole should
be used. Any other value overrides the default settings given in Show, Color, and Opacity. With either
ShowLine->False or LineColor->None, display of the object’s outline is suppressed.

LineThickness. The LineThickness should be a positive number, which gives the thickness
in printer’s points. Alternatively, any Mathematica thickness directive may be used, as described in

1If the color directive specified in the Color option contains opacity information, that will take precedence over
the Opacity setting.

61

guide/GraphicsDirectives: Thin, Thick, Thickness[. . .], or AbsoluteThickness[. . .], this last
of which is equivalent to just giving a simple number as the option value. The SciDraw default thickness of
1pt is (intentionally) bolder than Mathematica’s default thickness of 0.5pt.

LineDashing. The LineDashing should be a positive number, which gives the dash length
in printer’s points. More complicated dashing patterns may be specified as a list {d1,g1,. . .} of
alternating dash and gap lengths. Alternatively, any Mathematica dashing directive may be used,
as described in guide/GraphicsDirectives: Dotted, DotDashed, Dashed, Dashing[. . .], or
AbsoluteDashing[. . .], this last of which is equivalent to just giving a simple number or list as the
option value. SciDraw also accepts Dashing->None, which means no dashing.

LineCapForm, LineJoinForm. These options are provided for completeness, to allow control
over the cap form (whether or not line ends are rounded) and join style (mitering or beveling) for the outline.
However, there is rarely reason to change these aspects of the line styling away from the defaults. The values
for these options should be given in the same form as the arguments to the Mathematica CapForm[. . .]
and LineForm[. . .] directives, described in guide/GraphicsDirectives.

LineDirectives. The LineDirectives option need not normally be used. It is provided so that,
if new versions of Mathematica introduce new graphics style directives, they can immediately be used with
SciDraw.

8.1.3 Fill appearance

Table 8.3 Options affecting the object fill.
Option Default
ShowFill Default Whether or not the fill should be visible.
FillColor Default Color to be used for the fill.
FillOpacity Default Opacity to be used for the fill.
FillDirectives {} Additional graphics style primatives to apply to the

fill.

Options which affect the outline of an object are summarized in Table 8.3.

ShowFill, FillColor, FillOpacity. The color (and opacity) for the fill can take the default
values for the object as a whole, or they can alternatively be specified separately from the rest of the ob-
ject. The value Default for any of these options (ShowFill, FillColor, or FillOpacity) means
that the setting given by Show, Color, or Opacity (Table 8.1) for the object as a whole should be
used. Any other value overrides the default settings given in Show, Color, and Opacity. With either
ShowFill->False or FillColor->None, display of the object’s fill is suppressed.

FillDirectives. The FillDirectives option need not normally be used. It is provided so that,
if new versions of Mathematica introduce new graphics style directives, they can immediately be used with
SciDraw.

62

8.1.4 Point appearance

Table 8.4 Options affecting geometric points.
Option Default
ShowPoint Default Whether or not the point should be visible.
PointColor Default Color to be used for the point.
PointOpacity Default Opacity to be used for the point.
PointSize 3 The size (diameter) to be used for the point.
PointDirectives {} Additional graphics style primatives to apply to the

point.

Objects may also contain graphical “points”, that is, Mathematica Point directives (see ref/Point). The
main example in SciDraw is the FigPoint object (Sec. 11.5). Options which affect the appearance of
points are summarized in Table 8.4.

ShowPoint, PointColor, PointOpacity. The color (and opacity) for the point can take the
default values for the object as a whole, or they can alternatively be specified separately from the rest of the
object. The value Default for any of these options (ShowPoint, PointColor, or PointOpacity)
means that the setting given by Show, Color, or Opacity (Table 8.1) for the object as a whole should
be used. Any other value overrides the default settings given in Show, Color, and Opacity. With either
ShowPoint->False or PointColor->None, display of the point is suppressed.

PointSize. The PointSize should be a positive number, which gives the diameter (not radius!)
in printer’s points. For consistency with Mathematica, any of the point size directives described in
guide/GraphicsDirectives may also be used: Tiny, Small, Medium, Large, PointSize[. . .], or
AbsolutePointSize[. . .], this last of which is equivalent to just giving a simple number as the op-
tion value. However, using any of these directives causes Mathematica to size the point without SciDraw’s
knowledge, preventing SciDraw from accurately calculating anchor locations relative to the edges of this
point. The SciDraw default diameter 3pt is the same as Mathematica’s default.

PointDirectives. The PointDirectives option need not normally be used. It is provided so
that, if new versions of Mathematica introduce new graphics style directives, they can immediately be used
with SciDraw.

8.1.5 Text appearance

Table 8.5 Options affecting the graphical appearance of text.
Option Default
ShowText Default Whether or not the text should be visible.
TextColor Default Color to be used for the text.
TextOpacity Default Opacity to be used for the text.
TextStyleOptions {} Additional style options or directives to apply to the

text.

Options which affect the appearance of the textual elements of an object are summarized in Table 8.5.

63

ShowText, TextColor, TextOpacity. The color (and opacity) for the text can take the default
values for the object as a whole, or they can alternatively be specified separately from the rest of the object.
The value Default for any of these options (ShowText, TextColor, or TextOpacity) means that
the setting given by Show, Color, or Opacity (Table 8.1) for the object as a whole should be used. Any
other value overrides the default settings given in Show, Color, and Opacity.

TextStyleOptions. The TextStyleOptions option need not normally be used. It may contain
a list of additional style options or directives in the form accepted as arguments to Style (ref/Style).

8.1.6 Text font characteristics

Table 8.6 Options affecting the font characteristics (typeface) used for text.
Option Default
FontFamily "Times" The font family.
FontSize 16 The font size, in printer’s points.
FontWeight Plain The font weight (or boldness).
FontSlant Plain The font slant (or italicization).
FontTracking Plain The horizontal spacing between letters.
FontVariations {} Options specifying addtional font variations, such

as underlining.

Options which affect the font characteristics (or typeface) of the textual elements of an object
are summarized in Table 8.6. Common examples would be FontFamily->"Helvetica" for
the Helvetica font, FontSize->12 for 12pt type, FontWeight->"Bold" for boldface type, or
FontSlant->"Italic" for italic type. Detailed information on these options may be found in the
Mathematica documentation under ref/FontFamily, ref/FontSize, etc.

8.1.7 Text background and frame

Table 8.7 Options affecting the background and frame for text.
Option Default
TextBackground None The text background color.
TextFrame False Whether or not to show a frame line around the text.
TextFrameColor Default Color to be used for the text frame line.
TextRoundingRadius 0 The rounding radius, in printer’s points, for the cor-

ners of the text background coloring and frame line.
TextMargin None The margin, in printer’s points, between the text and

the edge of its background coloring and frame line.
TextPadding False Whether or not the text should be padded to a full

line height before applying the margin given by
TextMargin.

The text background can serve to “blank out” drawing elements behind the text which would otherwise be
distracting or prevent the text from being readable. A text background and/or frame can also be used to
emphasize or set apart (or perhaps simply gratuitously decorate) text. Options which affect the background
and frame of the textual elements of an object are summarized in Table 8.7.

64

TextBackground. The TextBackground may be any color specification. Alterna-
tively, if the background is intended solely to blank out drawing elements behind the text,
TextBackground->Automatic should be used. This indicates that the background color should be
taken from the background color of the present panel. The default value TextBackground->None
means that no background is drawn.

TextFrame. A frame is only drawn if TextFrame->True.

TextFrameColor. The color for the frame is by default the same as the color of the text, but it can
be changed with the option TextFrameColor. The thickness, dashing, or opacity of text frames cannot
be changed in Mathematica (at least as of version 8).

TextRoundingRadius. The TextRoundingRadius option controls the rounding of the frame
corners. The radius is given in printer’s points and may either be a single number r or a pair {rx,ry}. Further
discussion of rounding may be found in ref/RoundingRadius.

TextMargin. The TextMargin option controls the separation of the frame and/or the edge of the
background coloring from the text. The value is given in printer’s points. Different separations may be given
for different edges: the option may be a single number for all edges d, different values for the horizontal and
vertical edges {dx,dy}, or different values for each edge {{dL,dR},{dB,dT}}. Further information may be
found in the discussion of the Mathematica FrameMargins frame option in ref/FrameMargins.

TextPadding. This option is provided for completeness and consistency with Mathematica. It ensures
that the frame is at least as high as a line of text, even if the characters in the label do not take up that full
height. Further information may be found in the discussion of the Mathematica ContentPadding frame
option in ref/ContentPadding.

8.1.8 Text positioning

Table 8.8 Options affecting positioning of text.
Option Default
TextOffset Automatic The offset of the anchor within the text rectangle.
TextOrientation Automatic The text orientation, or rotation about the anchor.
TextRectify True Whether or not to automatically rectify text which

would, otherwise, appear inverted.
TextNudge None An additional arbitrary displacment of the text, in

printer’s points.
TextBuffer None An additional displacement of the text, in printer’s

points, in the direction from the anchor point to the
text center.

SciDraw provides extensive possibilities for fine control over text positioning. Options which affect the po-
sitioning of the textual elements of an object are summarized in Table 8.8. These all modify the positioning
of the text relative to that defined by an anchor.

TextOffset. The TextOffset describes where the anchor point lies within the text bounding box,
from {-1,-1} at the lower left corner to {+1,+1} at the upper right corner. A value of Automatic
means to use the default offset value specified by the anchor.

65

TextOrientation. The TextOrientation describes the orientation of the text baseline. The
orientation is specified as an angle θ counterclockwise from the x-axis, as usual for plane polar coordinates.
The angle must be given in radians, but recall that the Mathematica constant Degree may be used for
convenient conversion, e.g., TextOrientation->45*Degree. A value of Automatic means to use
the default orientation angle specified by the anchor object. The value Horizontal is equivalent to
0*Degree, and Vertical is equivalent to 90*Degree. Occasionally it is useful to specify the value
Inverse, which means inverted (rotated by 180◦) relative to the default orientation angle specified by the
anchor object.

TextRectify. What if a curve bends around so that text running tangent to it would be upside
down, by which I mean more than 90◦ away from the usual horizontal direction? What if an arrow is
pointing down and to the left, so that text running along it would be upside down? By default, with
TextRectify->True, SciDraw will automatically rectify the text, that is, rotate it by 180◦ so that
it is “right side up”. (Here I mean within 90◦ of the usual horizontal direction — roughly speaking,
so you do not have to stand on your head to read it!) However, this feature may be disabled with
TextRectify->False.

TextNudge, TextBuffer. The options TextNudge and TextBuffer both allow you to shift
the position of the text. The distances for both are in printer’s points.

If you simply wish to nudge the text by a specific xy displacement — regardless of whether or
not it is attached to an object and what direction that object happens to be in — you would specify
TextNudge->{dx,dy}. More often than not, you will want to nudge text vertically, i.e., upward or
downward, so SciDraw allows you to specify a vertical nudge in shorthand form, as a single number
TextNudge->dy.

On the other hand, TextBuffer is specifically relevant to text which is attached to an object, such as
text running along a line or an arrow. Often you will simply want adjust the buffer space between text and the
object it is attached to — move it away from or closer to the object — without worrying about exactly what
direction (in terms of x and y components) that happens to be. This is accomplished with TextBuffer.
For instance, if you are using a heavy line thickness for your arrows, and the text attached to all your arrows
is therefore “bumping up” against the lines, you might want to move the text away from the arrows, say,
by an extra 1pt, which would be accomplished with SetOption[FigArrow,TextBuffer->1]. (A
positive value moves the text “away from” the object, a negative value “towards” the object.)

8.1.9 Layering

Table 8.9 Layer option.
Option Default
Layer Automatic The drawing layer of the object.

Layer. The option Layer determines how each graphical element ranks relative to others in terms of
being in the “background” or “foreground”, through a layer number. With Layer->Automatic, the
layer number is 1 for drawing elements (lines, fills, and points), 2 for text background coloring (which
should normally hide drawing elements but not obscure nearby overlapping text), and 3 for text. If, instead,
a numerical value is specified for the Layer option for a given figure object, all graphical elements of the
object wil be drawn in the given layer. This lets you bring an object to the foreground or push it to the
background. Layers are only relevant for the ordering (background to foreground) of elements within the
same panel (Sec. 10.1). If panels are nested (inset) within each other, once all objects within the inner panel
are generated, the entire panel (panel frame and labels, plus contents) is “flattened”, and elements appear

66

together at the same layer in the outer panel. This layer is normally 1 but can be controlled by the Layer
option given to the inner FigurePanel.

8.2 Attached label options

Table 8.10 Attached label options.
Option Default
XLabel None The label contents.
XLabelPosition Automatic Additional positioning argument to use when gen-

erating the label anchor.

XShowText,
XTextColor,. . .,
XFontFamily,. . .,
XTextBackground,. . .,
XTextOffset,
XTextNudge,. . .

Default As defined in Tables 8.5–8.8.

Attached labels, as introduced in Sec. ?? of the user’s guide, are labels which can be drawn along with an
object, simply by specifying the label text as an option to the object. These labels are attached to a few
possible predefined positions on an object, consisting of some or all of the positions defined by the named
anchors described in Sec. 7.1.2. Using attached labels is usually the most convenient alternative for simple
labeling tasks. However, it is not as completely flexible as creating the label separately, as a FigLabel —
for instance, only one attached label can be given for each named anchor point. The options used to generate
these labels are summarized in Table 8.10.

XLabel. Each attached label is named according to the anchor to which it is attached. If the name of the
label is X , then the text for this label is given as the option XLabel. For example, for a FigRectangle
(Sec. 11.4), the possible attached label names X are Left, Right, Bottom, Top, and Center.
Thus, for FigRectangle, the text is given with the options LeftLabel->text, RightLabel->text,
BottomLabel->text, TopLabel->text, or CenterLabel->text.

XLabelPosition. As just noted, the attached labels are attached at the positions of named anchors.
The locations of many of these anchors can modified by the inclusion of an additional argument, as indicated
in Table 7.2 of Sec. 7.1.2. The available anchor names and possible additional argument are defined for each
type of figure object in the reference section for the given object, e.g., for FigRectangle these may be
found in Sec. 11.4. The possible values of the option XLabelPosition are Automatic (if there is no
extra argument to be used when determining the anchor) or else the value to be used for that argument.

Standard text options. For each of the standard options affecting the graphical appearance of text
(Table 8.5), the typeface of text (Table 8.6), or the text background and frame (Table 8.7), there is also a
corresponding option which controls that attribute specifically for label X . The value Default for any of
these options means that the value from the standard option should be used. Thus, e.g., corresponding to the
option FontSize, there is also, for the Left label, an option LeftFontSize. If the LeftFontSize
option is left unspecified, as Default, then the Left label will inherit the value of FontSize given for
the object as a whole.

67

9 Styles and advanced option control

9.1 Defining styles

Table 9.1 Defining and inspecting styles.
DefineStyle[style, {
symbol->{options},. . .,parent,. . .}]

Generates a style named style, by applying the given
options for the given symbols and/or inheriting from
the given parent styles.

StyleOptions[style] Returns the options associated with style, for all
symbols.

StyleOptions[style,symbol] Returns the options associated with style, for the
given symbol.

Description. A style defines default values for options for one or more Mathematica symbols — we are
most interested here in defining default option values for figure objects.1 These default option values later
be retrieved and applied to an object, just as if you had set them with SetOptions, by giving the option
Style->style to the object. (The default values in the style can still be overridden by giving the object an
explicit value for the option.) Or the option values defined in a style can variously be applied to all objects in
a figure, or in a given panel of a figure, or for selected sets of objects within a figure, as discussed below in
Sec. 9.2. In this fashion, a style can actually provide default options, not just for figure objects, but for any
Mathematica function which accepts options, such as the Mathematica Plot function or the CustomTicks
function LinTicks.2

DefineStyle. The command DefineStyle[style,{. . .}], summarized in Table 9.1, defines
a named style. Options may be given for specific symbols, as in DefineStyle[style, {. . .,
symbol->{option->value,. . .},. . .}]. Alternatively, all options specified in a previously-defined “par-
ent” style my be incorporated by reference to the name of that style, as Options may be given for specific
symbols, as in DefineStyle[style,{. . .,parent,. . .}].

Naming convention. The same naming convention which was recommended for objects, in Sec. 6, ap-
plies to style names as well. A style name should typically be given as a string, e.g., "SpectrumPlot".
Alternatively, a style name may be given as a list beginning with a string and followed by some other de-
scriptive information, e.g., {"SpectrumPlot","grayscale"} or {"SpectrumPlot","color"}.
This list syntax is especially useful for defining style names which accept variable arguments, as described
below.

Styles with arguments. The style name given in DefineStyle[style,{. . .}] may involve named
patterns, much as in the left hand side of a Mathematica function definition.3 These named patterns serve
as arguments in the style name, which may be used anywhere in the list {. . .} which defines the style. For
example:

DefineStyle[
{"MyCircleStyle",r },
{
FigCircle->{FillColor->Firebrick,Radius->Canvas[r]}

1The basic concepts of styles are introduced in Sec. 3.2.7 of the user’s guide.
2Styles are implemented in a standalone package, named StyleOptions, which may be loaded and used inde-

pendently of SciDraw.
3See tutorial/DefiningFunctions for an introduction to defining functions.

68

}
];

Precedence of options. If multiple definitions for the default value of a given option arise within a
single option list for a given symbol, the definition which appears leftmost in the style definition list takes
precedence. However, if multiple option lists are provided for a given symbol, either given explicitly or via
references to a parent style, then the options in the rightmost option list take precedence. The reasoning is
that, in a style list like style1,style2,. . ., it is most natural to be able to think of the latter styles as overriding
the earlier styles.

Retrieving style options with StyleOptions. If you are ever in doubt as to the option
value definitions which may are implied by a given style, these may be revealed in all their gory
detail with StyleOptions[style]. To prune these down to the options for a given symbol, use
StyleOptions[style,symbol]. Using StyleOptions to inspect the options generated by a style
is particularly useful if the definition of a style is complex, e.g., inheriting from parent styles, and perhaps is
not not behaving as you expect.

9.2 Using styles
Applying styles to a Figure. To apply a style to an entire figure, one uses the Style option (Ta-
ble 8.1), as

Figure[. . .,Style->style];

or

Figure[. . .,Style->{style,. . .}];

for multiple styles. If a style contains options for Figure, e.g., CanvasSide or CanvasMargin (Ta-
ble 5.3), these will be used by Figure. However, applying a style to a Figure does much more than
simply control the properties of the Figure itself. All option values defined in style (for figure objects,
functions, etc.) are set as the default values while the figure body is evaluated.

Applying styles to a FigurePanel. Similarly, to apply a style to single panel of a figure, one gives
the Style option to FigurePanel. If a style contains options for FigurePanel, e.g., PanelRegion
or XFrameLabel, these will be used by FigurePanel. Moreover, all options values defined in style
(for figure objects, functions, etc.) are set as the default values while the panel body is evaluated. Similar
comments apply to Multipanel.

Applying styles to an individual figure object. A style may be applied to a given figure object by
giving it as the Style option (Table 8.1). For example,

FigLine[. . .,Style->style];

All option values stored in style are temporarily set as the defaults while the object is being constructed.
Thus, for instance, style can affect the appearance of a FigLine if it contains option definitions for
FigLine itself or, through inheritance, for FigObject.4

4In principle, a style can be applied to all subsequently-drawn objects of a given type by setting the default Style
option, for example, SetOptions[FigLine,Style->style]. However, if you are thinking of doing this, it is
worth considering first whether or not you might apply the style to the Figure or FigurePanel as a whole, or
via the WithStyle environment (described below) instead. I have come to the conclusion that using SetOptions
to set a style is in general confusing and probably never a good idea. It can be rather difficult to keep track of styles
imposed in this way. (Which objects do they actually apply to?) And any Style option given subseqently would

69

Styles for data plots. Data plots are described in Sec. 15. Here we note that, if a style contains options
for DataCurve, DataSymbol, or DataFill, all these options may be applied to a given data plot
(along with any options for DataPlot itself) by giving the Style option to DataPlot, as

DataPlot[. . .,Style->style];

Table 9.2 Applying styles within a limited scope, e.g., to a group of objects.
WithStyle[style,body] Evaluates body with options set according to style.

WithStyle. WithStyle[style,body] evaluates body, temporarily setting all options values defined
in style (for figure objects, functions, etc.) as the default values while body is evaluated.

9.3 Overriding options by object name

Table 9.3 Environment in which options can be specified for given figure objects, by pattern match-
ing on the object identifiers.
SetOptionOverrides[
patt->{rule1,rule2,. . .}]
SetOptionOverrides[
{patt1->{rule1,rule2,. . .}, . . .}]

Evaluates body, defining special option rules to be
used when creating certain objects.

SetOptionOverrides. SetOptionOverrides[patt->{rule1,rule2,. . .}] or
SetOptionOverrides[{patt1->{rule1,rule2,. . .}, . . .}] defines special option rules to be
used when creating objects with specific names or names matching the given patterns (see guide/Patterns).
This is extremely useful when a large number of objects are generated automatically using Mathematica’s
programming tools such as Do, but the options for some specific objects require manual “tweaking”. It is
possible that more than one pattern might match the same object name, in which case the options given by
each of these of these rules will be applied, in order (therefore, if the same option is specified more than
once, the first appearance of the option will be the one which takes precedence). SetOptionOverrides
may be applied repeatedly, adding cumulatively to the existing override definitions. These definitions are
limited in scope to the current frame or panel.

9.4 Scoping changes to default options

Table 9.4 Environment in which the default option values for figure objects can be locally rede-
fined.
ScopeOptions[body] Evaluates body, localizing any changes to options

for figure objects.

ScopeOptions. ScopeOptions[body] evaluates body, localizing any changes to options for fig-
ure objects,5 so that they do not affect the defaults outside of body. The options for the CustomTicks

completely supplant this style, rather than leaving open the option of adding to it cumulatively. The WithStyle
environment in general provides a more robust approach to imposing a style for several objects at once.

5The effect is similar to that of a “group” in LATEX, consisting of the text inside braces. Changes to font properties,
configuration parameters, etc., made within a LATEXgroup are localized to that group.

70

functions LinTicks and LogTicks are localized as well. (However, ScopeOptions does not affect
the options for other, non-SciDraw Mathematica symbols.) ScopeOptions is already automatically ap-
plied to the body of a Figure or FigurePanel, so changes to default option values do not “bleed” over
to other figures or panels.

71

10 Panels

Table 10.1 Panel generation with FigurePanel and Multipanel.
FigurePanel[{body}] Generates a standalone panel (Sec. 10.1).

Multipanel[body] Generates a multipanel array, containing the panels
in body (Sec. 10.2).

FigurePanel[{body},{row,col}] Generates one panel in a multipanel array
(Sec. 10.2).

FigurePanel[{body},All]
FigurePanel[{body},{rowpatt,col patt}]

Generates multiple panels in a multipanel array iter-
atively (Sec. 10.3).

10.1 FigurePanel basics
Description. FigurePanel sets a specified rectangular region as the current plotting region and de-
fines a coordinate system for plotting within that region. It also draws various ancillary elements (frame line,
frame labels, tick marks and labels, panel letter, and colored background) which serve to demarcate and an-
notate this region. A FigurePanel thus functions both as an object unto itself and also as an environment
in which other objects are drawn.

Arguments. The syntax for FigurePanel is summarized in Table 10.1. The basic syntax
FigurePanel[{body}] for a standalone panel is pretty — all the fun is in the options which may be
given to FigurePanel. Additional arguments are defined when FigurePanel is used within a multi-
panel array, as discussed in Sec. 10.2 and Sec. ??.

Use of braces around the panel body. The panel contains the objects created in the process of evalu-
ating the expression {body}. FigurePanel requires that the entire body be wrapped in braces, as {body}.
This is required by SciDraw to enforce readability (in particular, taking advantage of the way Mathematica’s
front end automatically indents code within braces) and to preempt the frustration arising from what would
otherwise be some of the most common typographical errors.

To explain, let us compare the situation if one does use braces, e.g.,

FigurePanel[
{

FigLine[. . .];
FigLine[. . .];
FigLine[. . .];

},
XPlotRange->{-1,1},YPlotRange->{-1,1}

];

to the hypothetical situation where we omitted the braces, e.g.,

FigurePanel[
FigLine[. . .];
FigLine[. . .];
FigLine[. . .], (* notice comma not semicolon *)
XPlotRange->{-1,1},YPlotRange->{-1,1}

]; (* WRONG -- NOT ALLOWED *)

72

Notice how the extent of the body is clear when we use braces, while the body runs in confusingly with
the options if we omit the braces. Moreover, the braces remove a common source of error as you edit the
contents — in the hypothetical braceless form, to add a new, fourth object, you would need to remember
to change the comma (“,”) after the last FigLine to a semicolon (“;”), while, in the braced form, every
expression can be terminated uniformly with a semicolon.

If you have previously used LevelScheme, you might be in the habit of separating the objects in the
body by commas, to make a list of objects, e.g.,

FigurePanel[
{

FigLine[. . .],
FigLine[. . .],
FigLine[. . .]

},
XPlotRange->{-1,1},YPlotRange->{-1,1}

];

This would be perfectly acceptable, and produces identical output to the example code above, but it is not
particularly recommended.

1

Table 10.2 PanelRegion option for FigurePanel.
Option Default
PanelRegion All The region to be covered by a panel.

PanelRegion. By default, the panel covers the entire current drawing region. Alternatively, the region
to be covered by the panel may be specified by the option PanelRegion->region (Table 10.2), in which
the region may be specified in any of the forms described in Sec. 7.4. (Most commonly, if the main canvas
region of a Figure is to be entirely covered by a single panel, no PanelRegion option is needed.) The
given region in PanelRegion->region is the area to be covered just by the frame (or plotting region)
of the panel — any frame labels or tick labels may be expected to extend beyond this region. Such an
interpretation of region ensures that the panel frame size remains predictably constant even as the tick or
frame labels change.2

General appearance options. The appearance of the panel elements is controlled through the usual
options of Sec. 8, in particular, the general options (Table 8.1), outline options (Table 8.2), and text options

1If you are wondering what the differences might be, here is a technical note. . . In LevelScheme the goal was to
make a list of objects. That is no longer relevant in SciDraw. In SciDraw, the expression which arises as the end result
of evaluating {body} simply does not matter — it is thrown away! Rather, what actually shows up in the figure depends
only upon the figure objects created (as a “side effect”) during the evaluation of {body}. If you are an object-oriented
programmer, you can think of the figure object function, such as FigLine[], as the constructor for an object, which
registers that object in a list of objects to later be drawn. Alternatively, if you are a Mathematica programmer, you
can think of the figure object function as “sowing” (see tutorial/CollectingExpressionsDuringEvaluation) the object
into a list of objects to be drawn. Syntactically, in Mathematica, semicolons tie several expressions together to form
a compound expression (see ref/CompoundExpression), while commas separate arguments to a function or entries
of a list. So, if you are wondering what the syntax means to Mathematica, in the recommended form of the {body}
argument shown above, since the contents of the braces terminate with a semicolon, the returned value of the compound
expression is actually Null, so the full expression in braces evaluates to a list, with this as its one entry, {Null}—
again, irrelevant, since the result is thrown away.

2This behavior of FigurePanel is in intentional contrast to the behavior of Mathematica plotting output, where
the frame will shrink or grow as the frame or axis labels change, as illustrated in Sec. 3.1.2 of the user’s guide.

73

(Tables 8.5–8.7). The outline options affect the panel frame, and the text options affect the various panel
labels.

Table 10.3 Options for FigurePanel, controlling the background.
Option Default
Background None The panel background fill color.
BackgroundOpacity None The panel background opacity.
BackgroundDirectives {} Additional graphics style primatives to apply to the

background.

Background options. A panel background may be drawn, consisting of a solid rectangle covering the
entire panel region. This will hide any graphics drawn “behind” the panel. The background color is specified
through the option Background. The remaining options in Table 10.3, BackgroundOpacity and
BackgroundDirectives, are analogous to the corresponding fill directives described in Table 8.2.

Table 10.4 Options for FigurePanel, controlling the plot range.
Option Default
XYPlotRange∗ {0,1} Coordinate range for plotting or drawing within the

panel.
XYExtendRange∗ None Fractional amount by which the plot range should

be extended.

∗ This option controls properties which can have separate values for the horizontal and vertical directions. A table
entry XYoption here actually represents three different options: options Xoption and Yoption, and alternatively just
plain option (default value Default), as described in the text.

XYPlotRange. The option XPlotRange->{x1,x2} sets the horizontal plotting range for the panel,
and YPlotRange->{y1,y2} sets the vertical plotting range. As discussed in Sec. 3.1.3, it is often or-
ganizationally easier (at the cost of slightly more typing) to define the x axis properties through separate
options from the y axis properties. This is true even for a standalone panel and becomes imperative in
multipanel arrays. However, for consistency with the Mathematica plotting commands, the plot range may
also be specified for both axes simultaneously with the option PlotRange->{{x1,x2},{y1,y2}} (see
ref/PlotRange). The default value is PlotRange->Default, which simply indicates that the range
is to be taken from XPlotRange and YPlotRange instead.

XYExtendRange. The XYExtendRange options control the extension of the coordinate range cov-
ered by the panel, relative to the specified XYPlotRange, in the spirit of the PlotRangePadding
option for the usual Mathematica Plot commands (see ref/PlotRangePadding). The option
XExtendRange->d gives a fractional amount by which the plot range should be extended in each di-
rection along the x axis, or XExtendRange->{dx1,dx2} gives different fractional amounts for the left
and right edges. The option YExtendRange is defined similarly for the y axis. Alternatively, the frac-
tional extension for both axes may be given through the option ExtendRange, in the form dd (same
on all sides), {dx,dy} (different for horizontal and vertical directions), or {{dx1,dx2},{dy1,dy2}} (dif-
ferent for left, right, bottom, and top). The value ExtendRange->Automatic is a shorthand for a
0.02 (2%) extension on all sides, which is the default extension used by the usual Mathematica plotting
functions, such as Plot. Alternatively, ExtendRange->None gives no extension. (The default value,
ExtendRange->Default, indicates that the range extensions are to be taken from XExtendRange
and YExtendRange instead.)

74

Table 10.5 Options for FigurePanel, controlling whether of not to draw the frame edges.
Option Default
XYFrame∗ True Whether or not to display the frame. The four indi-

vidual edges may be controlled separately.

∗ This option controls properties which can have separate values for each edge of the panel. A table entry XYoption
here represents five options: options Xoption and Yoption for the bottom and left edges, options XXoption and
YYoption (default value Default) to override these for the top and right edges, and alternatively option (default
value Default) for consistency with Mathematica’s form {{L,R},{B,T}} for frame options.

Frame (or XYFrame). With Frame->False, no frame, frame labels, or tick marks will be drawn
for the panel. The effect is much as when Frame->False is given to the usual Mathematica plotting
commands (see ref/Frame). However, for completeness, it should be noted that this option follows the gen-
eral syntax for edge options (discussed in the General note on edge options immediately beneath Table 10.6
below). Thus, each of the four edges of the panel can be enabled or disabled independently.

Table 10.6 Options for FigurePanel, controlling the frame labels.
Option Default
XYFrameLabel∗ None Label to display on each edge.
XYShowFrameLabel∗ Exterior Whether or not to show the label on each edge.
XYFrameLabelPosition∗ Automatic Position of the label on each edge.

XYTickLabelAllowance∗ Automatic Allowance for tick labels, between panel edge and
frame label.

XYFrameTextColor∗,. . .,
XYFrameFontFamily∗,. . .,
XYFrameTextBackground∗,. . .

Default As defined in Tables 8.5–8.7.

∗ This option controls properties which can have separate values for each edge of the panel. A table entry XYoption
here represents five options: options Xoption and Yoption for the bottom and left edges, options XXoption and
YYoption (default value Default) to override these for the top and right edges, and alternatively option (default
value Default) for consistency with Mathematica’s form {{L,R},{B,T}} for frame options.

General note on edge options. The bottom and left edges of a panel — which may be thought of as
the primary edges — typically require different treatment from the top and right edges — which may be
thought of as the secondary edges. In particular, frame labels and tick labels are typically only displayed on
the primary edges, although tick marks (without their labels) are also typically displayed on the secondary
edges. These distinctions affect the natural default choice of option values for the secondary edges. For
some properties (tick mark properties), the secondary edges should normally “mirror” the primary edges,
while, for others properties (tick label and frame label properties), the secondary edge should not normally
simply mirror the primary edge. We also need the flexibility to break these rules. For instance, the left
(primary) edge might be used to label the vertical axis in one set of units, while the right (secondary) edge
might be used to label the axis in a different set of units. In this case, the secondary edge requires a different
frame label and set of tick marks (and tick labels) from the primary edge.

A robust approach has been developed in SciDraw which takes the “sensible” defaults for the sec-
ondary edges, while also allowing these to be overridden, and doing so in a way which systematically works
both for standalone panels and for multipanel arrays. For a given option, the value for the bottom edge
is specified through Xoption and the value for the left edge through Yoption. The secondary edges are

75

controlled through the options XXoption for the top edge and YYoption for the right edge. If these are left
as XXoption->Default and YYoption->Default, the aforementioned sensible defaults (spelled out in
detail for each option below) are used.

The four options Xoption, Yoption, XXoption, and YYoption provide complete control over all four
edges of the panel. They are usually the recommended means of controlling the edges, and the only vi-
able route for multipanel arrays. However, as an alternative, in acknowledgement of the syntax of the
options for the usual Mathematica plotting commands, just plain option is also accepted. The plain form
option is indeed convenient and recommended when you need to specify a single value for all edges at
once, e.g., giving LineColor->Gray is simpler and more natural than giving XLineColor->Gray
and YLineColor->Gray separately. In general, the plain form option may be used to specify a
single value for all sides as value,3 different values for the horizontal and vertical primary edges as
{horizontal,vertical}, or different values for each edge as {{le f t,right},{bottom,top}}.

In multipanel arrays, an important distinction arises between “exterior” edges at the outer edge of the
array (these should have frame labels and tick labels drawn alongside them) and “interior” edges which
abut a neighboring panel (and therefore often should not have frame labels and tick labels drawn alongside
them). The distinction between interior and exterior edges is handled through the special option value
Exterior. This value is allowed in place of True or False for certain options (ShowFrameLabel
and ShowTickLabels) described below. It is interpreted as True for exterior edges but False for
interior edges.

XYFrameLabel. The text for the labels on the frame edges (“axis labels”) is given through
XYFrameLabel. Secondary edges: When left as Default, the frame label text for the secondary edge
mirrors that on the primary edge, but it should be noted that this text will not actually be displayed unless
the label is enabled with ShowFrameLabel, described below.

XYShowFrameLabel. This option handles the eccentricities of frame labeling on exterior vs. interior
edges and primary vs. secondary edges. The default value Exterior insures that frame labels appear only
on exterior edges. However, in a multipanel array with large gaps between panels, you might wish frame
labels to appear even on interior edges. This result may be obtained with ShowFrameLabel->True
(or XShowFrameLabel->True and/or YShowFrameLabel->True for separate control of both di-
rections). Secondary edges: When left as Default, the option value for the secondary edge defaults to
False, or no frame labels.

XYFrameLabelPosition. The position of the frame label along the edge may be specified as
XYFrameLabelPosition->u, where 0 represents the lower/left end of the edge and 1 represents the
upper/right end of the edge. The default XYFrameLabelPosition->Automatic is equivalent to
0.5, or the middle of the edge. Note that the distance of the label outward from the edge is calculated
automatically from the dimensions of the tick mark labels, to place the frame label just beyond these. How-
ever, adjustments may be made using XYFrameLabelTextBuffer, XYFrameLabelTextNudge, or
XYFrameLabelTextMargin.

XYTickLabelAllowance. The trickiest part of positioning a frame label, without automated help,
would be to position it just far enough from the frame edge to allow room for the tick labels.4 With
XYTickLabelAllowance->Automatic, FigurePanel calls upon Mathematica to calculate the
actual dimensions of the text for all tick labels, and allows just enough room for the largest tick label. How-

3A single value for all edges is only permitted where it is commonly meaningful for all edges to share the same
value, e.g., for line style options, but not where the horizontal and vertical axes are generally expected to require
distinct values, e.g., for frame labels. An exception is that for many options the single value None is permitted, even
if a single value is not otherwise permitted.

4LevelScheme users will fondly (?) remember having to manually adjust the BufferB and BufferL options to
FigurePanel, by trial and error, for this purpose.

76

ever, this automatically calculated separation between the edge and the frame label may be overridden with
XYTickLabelAllowance->d, where the distance d is in printer’s points. This may be useful, for in-
stance, if you wish to align labels for different panels all at the same distance from their respective panel
edges.

Frame label appearance options. The remaining options in Table 10.6 control the text formatting for
the frame labels, following the usual conventions of Tables 8.5–8.7.

Table 10.7 Options for FigurePanel, controlling the frame tick marks and tick labels.
Option Default
XYTicks∗ Automatic Tick specification for each edge.
XYShowTicks∗ True Whether or not to show ticks on each edge.
XYTickLengthReference∗Automatic A base length (typically comparable to the width or

height of the panel), in printer’s points, used in the
calculation of the lengths of the tick marks.

XYShowTickLabels∗ Exterior Whether or not to show the tick labels accompany-
ing the tick marks on each edge.

XYTickLabelRange∗ Automatic Coordinate range in which to permit tick labels
XYTickFontSizeFactor∗ 0.85 Tick font size, as a fraction of FontSize, if

XYTickFontSize is given as Automatic.

XYTickTextColor∗,. . .,
XYTickFontFamily∗,. . .,
XYTickTextBackground∗,. . .

Default As defined in Tables 8.5–8.7, except
XYTickFontSize has default value
Automatic.

∗ This option controls properties which can have separate values for each edge of the panel. A table entry XYoption
here represents five options: options Xoption and Yoption for the bottom and left edges, options XXoption and
YYoption (default value Default) to override these for the top and right edges, and alternatively option (default
value Default) for consistency with Mathematica’s form {{L,R},{B,T}} for frame options.

XYTicks. The specification for Ticks may be given in the form of a standard Mathematica tick speci-
ficication (see ref/Ticks), that is, as a list of tick marks (with information on their lengths, labels, etc.) or
else as a function which can automatically generate such a list of tick marks (given, as its arguments, the
range to be covered). You may use LinTicks (or LogTicks) from the CustomTicks package to gen-
erate a list of tick marks to give for this option (see the CustomTicks guide included with SciDraw). With
XYTicks->None, no tick marks are drawn. With XYTicks->Automatic, the LinTicks function is
used. Therefore, any option values set for LinTicks — with SetOptions or via styles (Sec. 9) — will
affect the generation of ticks for the panel. Secondary edges: When left as Default, the ticks on the sec-
ondary edge mirror those on on the primary edge, although it should be noted that the labels on these ticks
may not actually be displayed for the secondary edge, as controlled through ShowTickLabels, described
below.

XYShowTicks. By default, tick marks are shown on all edges, but this can be disabled for either the
horizontal or vertical axes with XYShowTicks->False. Secondary edges: When left as Default, the
secondary edge mirrors the primary edge.

XYTickLengthReference. This option can normally be left at its default value Automatic, but
its functioning should be described, since this relates to an important aspect of SciDraw’s treatment of tick
marks. Mathematica tick mark specifications — including those automatically generated by LinTicks for
the FigurePanel edges — contain a length (see ref/Ticks). For the usual Mathematica plotting com-

77

mands, this length indicates how long the tick mark should be “as a fraction of the distance across the whole
plot”. However, this length must be reinterpreted in the context of panels and multipanel figures. In fact,
even for a single panel, the “distance across the whole plot” can be quite different in the horizontal and ver-
tical directions, leading to a jarring disparity in tick mark lengths. It is visually preferable to have the same
tick mark length on the bottom/top edges as on the left/right edges, and therefore to use a common reference
length for all these sets of tick marks. In a figure with many side-by-side panels, tick mark lengths calculated
with reference to the distance across the entire figure will be overly long in proportion to a single panel. The
same problem arises for a small inset panel, which normally requires shorter tick marks than those for the
larger panel. Therefore, FigurePanel draws tick marks for the various edges as a fraction of a reference
length more suited to the panel being drawn. With XYTickLengthReference->Automatic, the de-
fault, the reference length for drawing tick marks on all edges is not the “distance across the whole plot” but
rather is the average of the width and the height of the panel being drawn. This length may alternatively be
given via this XYTickLengthReference option, specified in printer’s points. Secondary edges: When
left as Default, the secondary edge mirrors the primary edge.

XYShowTickLabels. This option handles the eccentricities of tick mark labeling on exterior vs. in-
terior edges and primary vs. secondary edges. The default value Exterior insures that tick labels appear
only on exterior edges. However, in a multipanel array with large gaps between panels, you might wish
tick labels to appear even on interior edges, which may be obtained with ShowTickLabels->True (or
XShowTickLabels->True and/or YShowTickLabels->True for separate control of both direc-
tions). Secondary edges: When left as Default, the secondary edge defaults to False, or no tick mark
labels.

XYTickLabelRange. Special handling of tick labels is required to prevent unsightly labels at the
extremes of the coordinate range, dangling beyond the edges of the panel — and perhaps overlapping
with neighboring panels. The solution is imperfect (human intervention might always be necessary in
unusual cases) but provides a pretty good fix for most situations. If the XYTickLabelRange option
is left at its default value, Automatic, then tick labels are limited to the given XYPlotRange —
whereas, the actual coordinate range covered by the plot can (and usually should) be made a bit larger using
the XYExtendRange option (most simply by specifying ExtendRange->Automatic, as described
above). With XYTickLabelRange->All, all tick labels are shown, to the edge of the frame, regardless
of XYPlotRange. A range may also be given explicitly, as XYTickLabelRange->{x1,x2}.

Tick label appearance (including XYTickFontSizeFactor). Typically, for a readable and
natural appearance, tick labels should be ∼ 15% smaller than the panel frame labels (that would be about
1pt to 2pt smaller, for typical font sizes). The option XYTickFontSize by default has the special value
Automatic — which is not normally otherwise defined for FontSize options in SciDraw.5 In this case,
the font size for the tick labels is derived from the value of the FontSize option for the whole panel,
by multiplying this font size by the value of the option XYTickFontSizeFactor (default 0.85). The
remaining options in Table 10.7 for the appearance of the tick label text follow the usual conventions of
Tables 8.5–8.7.

5The value Automatic here is not to be confused with the usual value Default, which here would make the
tick font size simply equal to the FontSize option for the panel.

78

Table 10.8 Options for FigurePanel, controlling the panel letter. See also Table 10.14 for
automatic panel letter generation in multipanel arrays.

Option Default
PanelLetter Automatic The panel letter text, which may be automatically

generated.
PanelLetterPosition Automatic The corner in which the panel letter appears and

how far it is inset from that corner.

PanelLetterTextColor,. . .,
PanelLetterFontFamily,. . .,
PanelLetterTextBackground,. . .

Default As defined in Tables 8.5–8.7.

PanelLetter. The text for a panel letter label is specified as PanelLetter->text. The default
PanelLetter->Automatic produces no label for a standalone panel and an automatically generated
label, described further in Sec. 10.2, for panels in a multipanel array. Setting PanelLetter->None
disables the panel letter even in a multipanel array.

PanelLetterPosition. The panel letter position is specified through PanelLetterPosition
as {corner,indent}. Here corner specifies a starting corner for positioning the label (more generally, a
“relative position” within the panel, specified as summarized in Table 7.10) and indent is the amount in
printer’s points by which the label should be indented, both horizontally and vertically, from that corner.
The position used when PanelLetterPosition->Automatic is {TopLeft,15}.

Panel letter appearance options. The remaining options in Table 10.8 control the text formatting for
the panel letter, following the usual conventions of Tables 8.5–8.7.

Table 10.9 Options for FigurePanel, controlling the rendering of the objects within the panel.
Option Default
Clip True Whether or not contents should be clipped to the

rectangular region covered by the panel.

Rasterize False Whether or not contents should be rasterized.
ImageResolution 300 Resolution for rasterization, in dots per inch.

Layer Automatic As defined in Table 8.9, but see text.

Clip. By default, all graphics drawn within the panel will be clipped to the boundaries of rectangular
region covered by the panel. However, with Clip->False, graphics will be allowed to extend out to the
edge of the canvas (or, if this panel is nested within another, at least out to the edge of the enclosing panel).
Finer control of which drawing elements are clipped is obtained by using FigureGroup, described in
Sec. 10.6. [UNDER CONSTRUCTION: The clipping process is under development and subject to
change.]

Rasterize & ImageResolution. To reduce the output size of complicated figures (e.g., with
thousands of data points) for inclusion in a journal article, it is sometimes necessary to rasterize the figure.
This is a compromise, since rasterization generally yields an inferior, fuzzy appearance compared to vector
graphics. If the entire figure is rasterized, e.g., using external drawing or image-processing software, the
result is thus inferior output for the entire figure — not just the offending data, but also the panel edges, tick
marks, and labels — which is particularly harmful to readability. SciDraw provides the alternative of raster-
izing just the panel contents, but leaving the panel frame, ticks, and labels as high-quality vector graphics

79

and text. Rasterization is requested with Rasterize->True, and the resolution can be specified through
the ImageResolution option. Finer control of which drawing elements are rasterized is obtained by
using FigureGroup, described in Sec. 10.6.6 [UNDER CONSTRUCTION: The rasterization process
is under development and subject to change.]

Layer. This option for FigurePanel controls the layer in which the entire panel (not just the panel
frame and labels, but also the panel contents given in {body}) appears relative to any objects outside the
panel. See Sec. 8.1.9 for further discussion.

Table 10.10 Special option for providing a name for a FigurePanel object.
Option Default
ObjectName None Object name for the panel.

ObjectName. There are instances in which it is useful to name a panel, as when you would later wish
to attach annotations (labels, lines, etc.) to the edges of the panel. However, for technical reasons relating to
the Mathematica expression evaluation process, the object name for a FigurePanel cannot be specified
as “FigurePanel[[name]][. . .]”, according to the usual syntax for figure objects. Thus, an alternative
route to “naming” a panel is provided, which is by giving it the option ObjectName->name.

Anchors. The anchors which may be generated from a FigurePanel object include all the an-
chors — Left, Right, Bottom, Top, and Center — defined for FigRectangle (Sec. 11.4), as
summarized in Table 11.11. The anchors are defined with respect to the rectangular frame of the panel,
that is, the plotting region. For completeness, we note that a "PanelLetter" anchor is defined. This
anchor is meant primarily for internal use in positioning the panel letter label, which is constructed as the
corresponding attached label.

Attached labels. Attached labels (as described in Sec. 8.2) are available for the Left, Right, Bottom,
Top, and Center anchor positions. The positioning parameters, as summarized in Table 11.11, may be
specified through the XLabelPosition options. Note that these labels would not normally be used
for axis labels, which are instead specified with XYFrameLabel∗, as described above. They are mainly
provided for completeness and consistency with the FigRectangle labels, but they may also be used
for an external panel label, analogous to the Mathematica PlotLabel option for the usual Mathematica
plotting commands (see ref/PlotLabel).

10.2 Multipanel arrays
Description. Multipanel is used to define the geometry and settings for a rectangular array of panels
with shared axes.

Arguments. The syntax for Multipanel and FigurePanel, for use in generating a standalone
panel, is summarized in Table 10.1. Within the body given to Multipanel, each individual panel is gen-
erated with FigurePanel[{body},{row,col}], as discussed further below. Beyond this basic syntax,
there is powerful support for generating several panels in an “iterated” fashion with a single FigurePanel
command, as discussed below in Sec. 10.3 — for these purposes, a pattern may be given in place of
{row,col}, or the form FigurePanel[{body},All] may be used.

6For technical reasons, rasterization is not presently supported for panels containing graphics included through
FigGraphics and FigInset (Sec. 13).

80

Table 10.11 Basic geometry options for Multipanel.
Option Default
Dimensions {1,1} The number of rows and columns within a multi-

panel array.
PanelRegion All The region to be covered by a panel.

Basic multipanel geometry. The basic geometry options for Multipanel are summarized in Ta-
ble 10.11. The option Dimensions->{rows,cols} is used to specify that the multipanel array should
have the given numbers of rows and columns {rows,cols}. The region to be covered by the multipanel ar-
ray may also be specified with the option PanelRegion->region, much as described for FigurePanel
in Sec. 10.1. The given region is the area to be covered just by the frames (or plotting regions) of the panels,
and any frame labels or tick labels may be expected to extend beyond this region. If no region is specified,
the value All is assumed. Thus, if the entirety of the main canvas region of a Figure is to be covered by
a multipanel array, as is by far the most commonly the case, no PanelRegion option is needed.

Body contents. The multipanel array contains the FigurePanel objects given in the argument
{body}. These are constructed as FigurePanel[{body′},{row,col}], where {body′} is now the body
of the panel itself (Table 10.1). The indexing follows the usual ordering used for matrices in mathematics,
i.e., row index increasing downward:

(1,1) (1,2) · · · (1,cols)
(2,1) (2,2) · · · (2,cols)
· · · · · · · · · · · ·

(rows,1) (rows,2) · · · (rows,cols)
This ordering is also consistent with the ordering used by the Mathematica Grid (see ref/Grid) and
GraphicsGrid (see ref/GraphicsGrid) constructs. For the reasons discussed in the Note on panel body
syntax in Sec. 10.1, it may be more readable to enclose the {body} in braces, e.g.,

Multipanel[
{

FigurePanel[. . .,{1,1}];
FigurePanel[. . .,{1,2}];
. . .

},
Dimensions->{4,2},
XPlotRange->{-1,1},. . .

];

However, the braces are not strictly required for Multipanel, and, indeed, we will see that they are not
particularly necessary for readability when we use automatic “iterated” generation of panels in Sec. 10.3,
e.g.,

Multipanel[
FigurePanel[. . .,All],
Dimensions->{4,2},
XPlotRange->{-1,1},. . .

];

81

Table 10.12 Layout adjustment options for Multipanel.
Option Default
XPanelSizes 1 List of column widths on relative scale, or single

width shared by all columns.
YPanelSizes 1 Similarly for row heights.
XPanelGaps 0 List of intercolumn gap widths on a relative scale,

or single width shared by all gaps.
YPanelGaps 0 Similarly for interrow gap heights.
XPanelGapsExterior False List characterizing the intercolumn gaps as interior

or exterior, or a single value shared by all gaps.
YPanelGapsExterior False List characterizing the interrow gaps as interior or

exterior, or a single value shared by all gaps.

Multipanel layout. By default, all columns of panels are of equal width, all rows of panels are of equal
height, and there are no gaps between. However, arbitrary proportions for the columns, rows, and gaps be-
tween them can be specified using XPanelSizes, YPanelSizes, XPanelGaps, and YPanelGaps.
The columns and intercolumn gaps fill the available horizontal space, keeping the proportions given in these
options, so only the proportions matter. For instance, doubling the values of both XPanelSizes and
XPanelGaps has no effect.7 For XPanelSizes, either a single value may be given (but typically this
would be left as 1) or a list of values may be given for each column. For XPanelGaps, either a single
value may be given (say, 0.05 for a 5% gap) or a list of values for the different intercolumn gaps. A similar
discussion applies to the rows (YPanelSizes) and interrow gaps (YPanelGaps).

The options XPanelGapsExterior and YPanelGapsExterior determine whether or not the
panel edges bordering each of the intercolumn gaps should be taken as exterior panel edges. If a gap is
marked as exterior (True), then the edges bordering it are considered to be exterior. These classifications
may be overridden on a panel-by-panel basis using the FigurePanel option ExteriorEdgeMask (see
Table 10.13 below). The distinction of which edges are designated interior and which are designated exterior
is only relevant for options which have been given the value Exterior.

Panel options within a multipanel array. The remaining options for Multipanel are the same
as for FigurePanel. These are as described in Sec. 10.1, with a few additions discussed be-
low.8 Essentially, the options given to Multipanel are “passed on” to any panel constructed as
FigurePanel[{body},{row,col}]. For instance,

Multipanel[
{

FigurePanel[. . .,{1,1}];
FigurePanel[. . .,{1,2}];
. . .

},
Dimensions->{4,2},
XPlotRange->{-1,1},YPlotRange->{-1,1},
XFrameLabel->textit["x"],YFrameLabel->textit["y"],

7More precisely, the only effect is on the definition of the “column width” unit discussed below under More on
coordinates.

8In fact, FigurePanel is the “parent” object of Multipanel. That is, the default values for the options for
Multipanel are inherited from the defaults for FigurePanel. Therefore, if a change to panel styling is made by
setting the default options for FigurePanel, this change will also affect panels in multipanel arrays, even though
the options for such panels are, as explained in a moment, determined by Multipanel.

82

Background->Moccasin
];

would cause each panel to have x and y plot ranges {-1,1}, with the x and y frame labels as given, and
a background color Moccasin. As for any panel options not explicitly given to Multipanel, the de-
fault values in effect at the time Multipanel is invoked are “frozen in” and used for any panel con-
structed as FigurePanel[{body},{row,col}], regardless of any changes which might be made to the
FigurePanel default options — with SetOptions or styles — within the Multipanel body (these
changes would still affect, e.g., inset panels).

Different values for the panel options may be given for different rows or columns of the multipanel array,
or even more specifically on a panel-by-panel basis. For the horizontal plot range options or horizontal edge
options, with names of the form Xoption, the form already defined for FigurePanel was

Xoption->val

However, now, with Multipanel, we may also have column-by-column specifications

Xoption->{val1,val2,. . .,valcols}

or even a full two-dimensional array of panel-by-panel specifications

Xoption->{
{val1,1,val1,2,. . .,val1,cols},
{val2,1,val2,2,. . .,val2,cols},
. . .

}

Similarly, for the vertical plot range options or vertical edge options, with names of the form Yoption, we
may have row-by-row specifications

Yoption->{val1,val2,. . .,valrows}

or a full array of panel-by-panel specifications as above. The exception is that whole-panel options with
plain names of the form option can only be given a single value, to apply to all panels in the array, rather
than panel-by-panel specifications.9 The considerations discussed above also apply to the secondary edge
options XXoption and YYoption.

Even more flexibility is provided by the rule-based (and pattern-based) specification specification

Xoption->{{rowpatt,colpatt}->val,. . .}

or similarly for Yoption. For instance,

XFrameLabel->{
{1, } -> textit["x"],
{ , } -> textit["t"]

}

chooses the horizontal axis label “x” for all panels in the first row (any column) and “t” otherwise (as the fall-
through case). Even when you could specify a list of values row-by-row or column-by-column, as above,
the rule-based syntax may be more natural to use, and easier to update if you decide to increase or decrease

9This constraint is imposed since, otherwise, syntax ambiguities arise. For instance, for a 2× 2 array of panels,
would ExtendRange->{{0.1,0.2},{0.3,0.4}} be interpreted as single value of the option ExtendRange,
namely {{0.1,0.2},{0.3,0.4}} (i.e., to be applied identically to all panels in the array, and for each panel
interpreted as a set of numbers for the four different edges), or four different values of the option ExtendRange,
namely 0.1, 0.2, 0.3, and 0.4 (i.e., to be applied separately to the four different panels)?

83

the number of rows. Note that RuleDelayed (i.e., :>) may be used (see ref/RuleDelayed), to define the
option values as a functions of the row or column indices.

Options for individual panels within a multipanel array. Although we have just discussed many
ways of controlling the options for panels through Multipanel, we should not lose track of the possibility
that the value for any option to FigurePanel may still also be given directly to FigurePanel when
the panel is created. We now discuss a few options which are especially meant to be used in this way.

Table 10.13 Options for FigurePanel, controlling the geometry of the panel, primarily intended
for panels in a multipanel array.

Option Default
ExteriorEdgeMask Automatic Determines which edges of the frame are consid-

ered as “exterior” edges for labeling purposes in a
multipanel array.

RegionExtension None Amount by which to extend region covered by
panel.

RegionDisplacement None Displacement by which to shift region covered by
panel.

ExteriorEdgeMask. With ExteriorEdgeMask->Automatic, all edges are considered “exte-
rior” for a standalone panel, and the exterior edges are determined automatically for a panel in a multipanel
array. Normally, one can override these choices on a row-by-row or column-by-column basis using the
options XPanelGapsExterior and YPanelGapsExterior (Table 10.13). However, the designation
of exterior edges can also be overridden for an individual panel by specifying True or False values as
ExteriorEdgeMask->{{le f t,right},{bottom,top}}. A single logical value may also be given, to
apply to all edges. Thus, if a panel is to be treated as a “loner”, i.e., all edges are exterior, then we may
use ExteriorEdgeMask->True. The distinction of which edges are designated interior and which are
designated exterior is only relevant for options which have been given the value Exterior.

There are a few typical situations in which one would use ExteriorEdgeMask: (1) In the very
common situation in which every panel in a multipanel array is to be treated as a loner, we may simply
give the option ExteriorEdgeMask->True to Multipanel. (2) If some panels in a multipanel array
are not actually drawn, neighboring edges on other panels, which would normally be “interior” edges, are
now effectively on the “exterior” of multipanel array, and you might want frame labels and tick labels to
be drawn on them accordingly. (3) If a single panel is drawn spanning multiple rows or columns (using
RegionExtension), it might actually reach the edge of the multipanel array even though its nominal
row and column indices would not indicate this.

RegionExtension and RegionDisplacement. Although the options RegionExtension
and RegionDisplacement of Table 10.13 are actually valid options for all panels, their main use is in
multipanel arrays. Hence, we have deferred their discussion until here. These options would normally be
applied on a panel-by-panel basis to one or more individual panels within the multipanel array, rather than
to the full set of panels. These options are used to extend or adjust the region covered by the panel. They
have the same form and meaning as discussed in the context of AdjustRegion (Sec. 7.4). In the context
of a multipanel array, the typical form for RegionExtension would be {{dx1,dx2},{dy1,dy2}}, with
these numbers given in the natural (x,y) coordinates of the multipanel array — “column widths” and “row
heights” — as described below under More on body coordinates. The normal purpose would be to expand
one panel to span multiple rows or columns. Alternatively, RegionDisplacementmay be used to shift a
panel out of alignment with the rest of the grid, for instance, if it would more logically straddle two different
rows.

84

Table 10.14 Options for FigurePanel, controlling automatic panel letter generation.
Option Default
PanelLetterBase "a" The starting character for the panel lettering se-

quence.
PanelLetterDirection Horizontal Whether the lettering sequence proceeds across or

down.
PanelLetterOrigin {1,1} The multipanel array entry in which the lettering se-

quence starts.
PanelLetterDimensions Automatic The number of rows and columns in which the let-

tering sequence is calculated, starting at the given
origin as upper left.

PanelLetterCorrection 0 Number by which to advance the panel lettering se-
quence.

PanelLetterDelimiters {"(",")"} Text in which to sandwich the panel letter.

Automatic panel lettering. Each panel in a multipanel array can be annotated with a panel let-
ter which is automatically generated from the panel’s (row,col) position in the multipanel array. As
noted in Sec. 10.1 (see Table 10.8), this labeling is obtained with PanelLetter->Automatic
(the default). The standard lettering starts from lowercase “a”, beginning at the top left panel, and
proceeds in “English reading order” (across then down), with the panel letters sandwiched in paren-
theses. However, this configuration may be changed using the options in Table 10.14. These op-
tions may be used as options to Multipanel, to change the lettering sequence for the multipanel
array as a whole, or they may be given as options to FigurePanel for individual panels within
the array, if the lettering for individual panels requires special treatment. The starting letter can be
changed, say, with PanelLetterBase->"A" for uppercase letters, or PanelLetterBase->"e"
if the present array is meant to continue a previously-drawn sequence of panels labeled “(a)” through
“(d)”. This same shift might be accomplished more naturally (i.e., without the need for you, the
user, to count through the alphabet, to get to the letter “e”) with PanelLetterCorrection->4.
The option PanelLetterCorrection is even more useful if one or more panels within an ar-
ray is left empty, so that the lettering sequence for subsequent panels must be adjusted by one step,
e.g., with PanelLetterCorrection->-1, or similarly if more panels are left empty. The ori-
gin for lettering can be shifted away away from the top left corner using PanelLetterOrigin, say,
PanelLetterOrigin->{1,2} if the leftmost column of panels will be left unlettered (for instance,
perhaps they contain “decorative” diagrams rather than data). Similarly, panels at the right or bottom of
the array can be neglected in the lettering sequence using PanelLetterDimensions to give the di-
mensions of the “lettered” region of the array, say, PanelLetterDimensions->{3,2}, if the right-
most column of panels in a 3× 3 array should be ignored in calculating the panel letter. This lettered
region starts from the given PanelLetterOrigin as its upper left. The ordering can be changed
from “English reading order” (across then down) to “Chinese reading order” (down then across) with
PanelLetterDirection->Vertical. And, finally, the delimiters can be changed to any valid
Mathematica expressions. For instance, we would use PanelLetterDelimiters->{"[","]"} for
bracketed letters as “[a]”, or PanelLetterDelimiters->{"(",Superscript[")","′"]} (see
ref/character/Prime) for primed parentheses as “(a)′”.

Multipanel body contents beyond just panels. In comparing the syntax of FigurePanel with
that of Multipanel (Table 10.1), the similarities are more than just superficial. It is helpful to think of
the Multipanel as one big “panel”, which just happens not to have any sort of visible “frame”. Then
all the panels of the multipanel array, i.e., the FigurePanel objects given as {body}, are drawn as in-
sets to this big “panel”. In fact, just like the {body} of a FigurePanel, the {body} of a Multipanel

85

may contain other “loose” objects as well, not confined within a FigurePanel. These might include
arrows (FigArrow) to be drawn between panels, or extra labels (FigLabel), or perhaps brackets
(FigBracket) grouping several panels together. These objects are free to extend beyond the region of
the Multipanel (i.e., they will not be clipped to region).

Coordinates within a Multipanel. Furthermore, much as FigurePanel defines a coordinate
system for use in its {body}, so does Multipanel. If, as just described, you include objects (such as
arrows or labels) within a Multipanel’s body, but outside of individual panels, you need to be aware
of the coordinates with respect to which these are drawn. You can specify coordinates for these objects
in all the usual ways you would expect in SciDraw (Sec. 7.1.1). The meaning of Scaled coordinates is
clear, as a fractional distance across the whole region, e.g., Scaled[{0.5,1}] is the top center. But
what does a point {x,y} mean? The xy coordinates are measured in “panel widths” and “panel heights”,
starting from {0,0} at the lower left corner. The most important use arises if you wish to break away from
a simple rectangular arrangement of panels, in which case you will specify adjustments to the dimensions
and positioning of individual panels using these “panel width” and “panel height” coordinates, through the
options of Table 10.13. For an array of equally sized panels, the meaning of one “panel width” and one
“panel height” is unambiguous. For an array of unequally sized panels, the meaning is defined by the lists
XPanelSizes or YPanelSizes, respectively. One “panel width” or “panel height” is defined as the
width or height of a hypothetical panel of relative size “1” (though the number 1 need not actually appear
as an entry anywhere in either of these lists). Thus, e.g., for a multipanel array with three columns and

XPanelSizes->{1,2,2},
XPanelGaps->0.1

the x coordinate will run from 0 to 5.2 (i.e., 1+0.1+2+0.1+2).

Anchors. The anchors which may be generated from a MultiPanel object are the same as for a
FigRectangle, as described in Sec. 11.4. These anchors are summarized in Table 11.11. The anchors
are defined with respect to the rectangular boundary of the multipanel array.

Attached labels. Attached labels (as described in Sec. 8.2) are available for the Left, Right, Bottom,
Top, and Center anchor positions. The positioning parameters, as summarized in Table 11.11, may be
specified through the XLabelPosition options. Since many of the other options which can be given to
Multipanel are simply “passed through” to the FigurePanel objects within the multipanel array, it is
worth noting that this is not the case for the label options. For instance, a TopLabel option will produce a
single label at the top of the array, not a label at the top of each panel within the array.

10.3 Iterated generation of panels
Motivation. Very often, some or all of the different panels within a multipanel array are essentially
identical — in terms of the commands used to generate them — differing only in the data set which is to be
plotted in them (and maybe some of the labels that go along with the data set). Certainly, one could generate
the n panels by cutting and pasting the code for generating one panel, n times, and editing the code in the
body of each panel. For example, if we were trying to make a 5× 5 plot, where the data to be plotted in
panel (i, j) is given in MeasuredResults[i, j], we might try

Multipanel[
{

FigurePanel[
{

(* code for 1st panel’s data plot *)

86

DataPlot[MeasuredResults[1,1]]
},
{1,1}

];
FigurePanel[
{

(* code for 2nd panel’s data plot *)
DataPlot[MeasuredResults[1,2]]

},
{1,2}

];
. . .
FigurePanel[
{

(* code for 25th panel’s data plot *)
DataPlot[MeasuredResults[5,5]]

},
{5,5}

];
},
Dimensions->{5,5},. . .

];

Of course, you are clever, so you would realize that cutting and pasting something 25 times generally means
you are overlooking a simpler approach. Isn’t that what loops were invented for? You would actually write
something like

Multipanel[
Do[

FigurePanel[
{

(* code for {i,j} panel’s data plot *)
DataPlot[MeasuredResults[i,j]]

},
{i,j}

],
{i,1,5}, {j,1,5}

],
Dimensions->{5,5},. . .

];

After discovering that virtually every multipanel figure I was drawing had this same structure, I realized it
could be convenient if SciDraw provided a shortcut for such “iterated” generation of panels. This is what
we now summarize.

Iterated syntax. If FigurePanel is called as FigurePanel[{body},All], FigurePanel it-
erates over all possible (row,col) positions in the multipanel array, and evaluates {body} once for each
position, and draws the corresponding panel.10 Thus, this single call to FigurePanel may be thought
of as equivalent to several repeated calls to FigurePanel[{body},{row,col}], once for each position

10FORTRAN programmers might be reminded of the “implied DO loop” format specifier in a WRITE statement.

87

(row,col). The resulting code has the form

Multipanel[
FigurePanel[
{

DataPlot[MeasuredResults[PanelRowIndex,PanelColumnIndex]]
},
All

],
Dimensions->{5,5},. . .

];

A more selective subset of panels may be generated automatically by using any pattern {rowpatt,col patt}
in place of the All, for instance, {1, } to generate just the first row of panels.11

Table 10.15 Variables defined for use within the body of a FigurePanel within a multipanel
array.
PanelRowIndex Row index row (1-based).
PanelColumnIndex Column index col (1-based).
PanelIndices Row/column index pair {row,col}.
PanelSequenceNumber Sequential index for panel, from 1 at the top left,

proceeding across then down (English reading or-
der).

PanelRows Total rows in array, i.e., rows from Dimensions
option to Multipanel.

PanelColumns Total columns in array, i.e., cols from
Dimensions option to Multipanel.

Positional variables. How does the code in the body know which panel to generate the contents of, if
we don’t explicitly write a loop with iteration variables like row and col in the Do loop example above?
FigurePanel predefines several variables — PanelRowIndex, PanelColumnIndex, etc. — which
indicate the panel position, as summarized in Table 10.15. You may use these variables, as you wish in
body — they are particularly useful in conjunction with If and Switch statements, to systematically
control the contents or appearance of panels, according to their row and column. For example,

FigurePanel[
{

(* code for (row,col) panel’s data plot *)
. . .
(* only display legend in {1,1} panel *)
If[

PanelIndices=={1,1},
DataLegend[. . .]

11Actually, the implementation is really “the other way around”, from what would be implied by the presentation
in this more natural introduction. FigurePanel[{body},{rowpatt,col patt}] always iterates over all possible
values of {row,col}. Each {row,col} is checked against the pattern {rowpatt,col patt}, and, if it is found to match,
a panel is drawn. FigurePanel[{body},All] is just a shorthand for FigurePanel[{body},{ , }]. And
the basic “single panel” syntax FigurePanel[{body},{row,col}], e.g., FigurePanel[{body},{1,1}], is
actually just the special case in which the “pattern” reduces to a literal pattern, here, {1,1}.

88

]
},
All

];

Table 10.16 Positional assignment functions defined for use within the body of a FigurePanel
within a multipanel array.
SetByPanelRow[var,{val1,val2,. . .}] Sets var by row index.
SetByPanelColumn[var,{val1,val2,. . .}] Sets var by column index.
SetByPanelIndices[var,{
{val1,1,val1,2,. . .},. . .}]

Sets var by {row,col} indices.

SetByPanelSequence[var,{val1,val2,. . .}] Sets var by sequential panel index.

Positional assignment functions. Assignment functions are defined for convenience in making com-
mon types of variable assignments in a multipanel array, as summarized in Table 10.16. For instance,
SetByPanelRow[var,values] is short for var=values[[PanelRowIndex]], where values is a list of
values.

10.4 FigAxis

Table 10.17 Standalone axis.
FigAxis[side,coord,range] Generates a freestanding coordinate axis.

Description. A FigAxis is used to draw a standalone axis, anywhere within a figure — including tick
marks that are linked to the current coordinate system. The options for a FigAxis are nearly identical
to those for the edges of a FigurePanel, so it makes sense to discuss FigAxis now, in the context of
panels.12

Arguments. FigAxis[side,coord,range] (Table 10.4) draws an axis positioned according to the ar-
guments. The side — Bottom, Left, Top, or Right — determines the overall orientation (horizontal
or vertical) and configuration (where the labels and tick marks should be drawn relative to the axis). For
instance, a Bottom axis is like the bottom edge of a panel’s frame — horizontal, with labels below and
ticks extending above by default. The coord specifies the coordinate at which the axis should be placed (this
is an x coordinate value for a vertical axis, or a y coordinate value for a horizontal axis). Note that this coor-
dinate may be given in any of the various ways described for “individual coordinates” in Sec. 7.1.1, e.g., as
Scaled[xs] for positioning by scaled position across the current panel or by giving an anchor from which
the horizontal position should be taken. The range specifies the coordinate range the axis should cover (this
is a y coordinate range for a vertical axis, or an x coordinate range for a horizontal axis).

General options. The appearance is controlled through the usual options of Sec. 8, in particular, the
general options (Table 8.1) and outline options (Table 8.2).

12The similarity between FigAxis and the edges of a FigurePanel is more than just one of syntax. The
four edges of a panel are actually drawn as four separate axes, each one generated by the same underlying code as
FigAxis.

89

Table 10.18 Options for FigureAxis, controlling the axis label.
Option Default
AxisLabel None Label to display along axis.
ShowAxisLabel Exterior Whether or not to show the label.
AxisLabelPosition Automatic Position of the label along the axis.

TickLabelAllowance Automatic Allowance for tick labels, between axis and axis la-
bel.

AxisTextColor,. . .,
AxisFontFamily,. . .,
AxisTextBackground,. . .

Default As defined in Tables 8.5–8.7.

Axis label options. The axis label options are almost identical to those described for panel edges in the
discussion of FigurePanel (Sec. 10.1), as summarized in Table 10.6, except that the prefix XYFrame is
replaced by Axis. Thus, the label is specified via the AxisLabel option, its positioning is controlled via
the AxisPosition option, etc.

Tick options. The tick options are almost identical to those described for panel edges in the discussion
of FigurePanel (Sec. 10.1), as summarized in Table 10.7, just not preceded by an XY . Thus, the ticks
are specified via the Ticks option, and their formatting is controlled by options ShowTickLabels,
TickFontSizeFactor, TickTextColor, etc.

Table 10.19 Arrowhead extension options for FigAxis.
Option Default
TailExtension None Distance by which to extend axis at tail.
HeadExtension 10 Distance by which to extend axis at head.

Axis-specific options. A standalone axis may (and by default does) have an arrowhead on it, at the
positive end (head), and can have one at the negative end (tail) as well. The options controlling the arrow-
heads are the same as for a FigLine, discussed in Sec. 11.1 and summarized in Table 11.2. By default,
ShowHead->True for a FigAxis. Also, by default, a FigAxis is extended a bit beyond its given range,
to allow room for the arrowhead. The options HeadExtension and TailExtension, summarized in
Table 10.19, control this extension.

Anchors. The anchors which may be generated from a FigAxis object include all the anchors — Left,
Right, Head, Tail, etc. — defined for FigLine (Sec. 11.1), as summarized in Table 11.3. For com-
pleteness, we note that an "Axis" anchor is also defined. This anchor is meant primarily for internal use
in positioning the axis label, which is constructed as the corresponding attached label.13

Attached labels. The only attached label for a FigAxis is the axis label, described above.

13The anchor name "Axis" is chosen so that, under the naming conventions we have adopted for attached labels
(Sec. 8.2), the corresponding option name is AxisLabel.

90

10.5 WithOrigin

Table 10.20 Command affecting the current coordinate origin.
WithOrigin[p,body] Temporarily shifts the coordinate system used while

evaluating body, to use the given origin.

WithOrigin. WithOrigin[p,body] shifts the origin of the current panel’s coordinate system to
the point p, while evaluating body. Thus, in particular, WithOrigin[{x,y},body] effectively shifts
everything drawn in body by a displacement {x,y}. For convenience, a shorthand form is defined for a
simple horizontal shift — WithOrigin[x,body] is equivalent to {x,0}. Note that WithOrigin may
be nested, i.e., used recursively. Recall that the body argument to FigurePanel is required to by enclosed
in braces as {body} (see discussion in Sec. 10.1). While this is not strictly required for the body argument
to WithOrigin, doing so is usually recommended for readability.

10.6 FigureGroup

Table 10.21 Environment to group figure objects and control their rendering.
FigureGroup[{body}] Evaluates {body}, flattening and optionally clip-

ping or rasterizing the contents.

FigureGroup. FigureGroup[{body}] provides selective control over rendering — specifically,
clipping and rasterization — of groups of objects within a panel. All the objects generated in {body}
are sorted into their appropriate order (from background to foreground) according to their Layer option.
FigureGroup then clips and/or rasterizes the objects according the the options Clip, Rasterize,
and ImageResolution, with the same meanings and defaults as shown for FigurePanel in Ta-
ble 10.9. The result appears flattened into a single layer in the current panel, which by default is layer
1 but which may be controlled through the Layer option to FigureGroup. Like ScopeOptions
(Sec. 9.4), FigureGroup also localizes any changes to options for figure objects, so that they do not affect
the defaults outside of {body}. [UNDER CONSTRUCTION: FigureGroup is still experimental and
is subject to change.]

91

11 Basic drawing shapes

Table 11.1 Figure objects for basic drawing shapes.
FigLine[curve] Generates a “line” or, more generally, curve.
FigPolygon[curve] Generates a closed curve or polygon.
FigArrow[curve] Generates an arrow.

FigRectangle[p]
FigRectangle[p1,p2]
FigRectangle[region]

Generates a square or rectangle.

FigCircle[p] Generates a circle/ellipse or arc thereof.

FigPoint[p] Generates a geometric point.

FigBSpline[curve] Generates a spline curve from the given control
points.

In this section, we consider figure objects which may be used to draw basic geometric shapes, summarized
in Table 11.1. These objects are modeled upon the Mathematica graphics “primatives” (lines, polygons,
rectangles, circles, splines, and points). However, these are the SciDraw object-oriented, option-aware,
style-aware, easily-labelable, anchorable-to versions, capable of taking their position arguments as either
coordinates or as anchors (or perhaps even grabbing a sequence of curve points from plotting output) as
described in Sec. 7 and of leaping tall buildings in a single bound. There are many further capabilities
thrown in for practical convenience in generating scientific diagrams as well.

11.1 FigLine
Description. A FigLine is used to draw a line or curve connecting a series of points {p1,p2,. . .,pn}.1
It is therefore a generalization of the Mathematica Line primative (see ref/Line). The object consists of an
outline only. Since arrowheads can be drawn at either end of the curve, as described below, FigLine also
suffices for drawing simple arrows.

Arguments. In FigLine[curve] (Table 11.1), the points {p1,p2,. . .,pn} are determined by the ar-
gument curve, which may be specified in any of the ways described in Sec. 7.2. Since one possibility is to
take the curve directly from the output of a Mathematica Plot command, FigLine provides a convenient
means for restyling (and labeling) Mathematica plots.

General options. The appearance is controlled through the usual options of Sec. 8, in particular, the
general options (Table 8.1) and outline options (Table 8.2). The interpretation of the curve is controlled by
the options summarized in Table 7.7.

1A curve built as a series of line segments is more properly called a polyline in computer graphics terminology.

92

Table 11.2 Options for arrowheads on FigLine and other line-like objects.
Option Default
ShowTail False Whether or not to draw arrowhead at tail.
TailLength 6 Length of arrowhead at tail, in printer’s points.
TailLip 3 Half-width of arrowhead at tail, in printer’s points.
ShowHead False Whether or not to draw arrowhead at head.
HeadLength 6 Length of arrowhead at head, in printer’s points.
HeadLip 3 Half-width of arrowhead at head, in printer’s points.

Arrowhead options. Simple arrowheads can be drawn at either end of the curve, controlled through the
options summarized in Table 11.2. The first three options in Table 11.2 control the arrowhead at the “tail”
(starting point) of the curve, and the last three control the arrowhead at the “head” (ending point) of the
curve. Let us consider the latter for illustration. Setting ShowHead->True causes the arrowhead to be
drawn. The HeadLength gives the arrowhead’s length in printer’s points, measured along the direction of
the curve (i.e., the “shaft” of the arrow). A negative length gives a “reversed” arrowhead, extending beyond
the end of the curve. The HeadLip gives the half-width, or distance of each side of the arrowhead out from
the curve, in printer’s points. It may be given as a pair of numbers {lL,lR} for the left and right sides. If one
or the other of these values is given as 0, the result is a one-sided or “barbed” arrow head.

Table 11.3 Named anchors for FigLine objects.
Name Argument
Center u Position: A fractional distance u along the total length of the curve

(from 0 at the tail to 1 at the head).
Text offset: Centered on curve — {0,0}.
Orientation: Tangent to curve.

{FromTail,dist}
{FromHead,dist}

Position: A distance dist, in printer’s points, from the tail or head of
the curve, along the tangent to the curve (as in Table 7.6).
Text offset: Centered on curve — {0,0}.
Orientation: Tangent to curve.

{s,u}, etc. Any of the argument forms listed above, applied to the sth segment
of the curve

Left (similarly) Similarly, but with text offset {0,-1}, i.e., text along the “left” side
of the curve.

Right (similarly) Similarly, but with text offset {0,+1}, i.e., text along the “right”
side of the curve.

Tail — Position: At the tail point of the curve.
Text offset: Past the end of the curve — {+1,0}.
Orientation: Tangent to curve.

Head — Position: At the head point of the curve.
Text offset: Past the end of the curve — {-1,0}.
Orientation: Tangent to curve.

Point n Position: At the nth point.
Text offset: Centered on the point — {0,0}.
Orientation: Horizontal.

93

Anchors. The anchors which can be generated from a FigLine object (using FigAnchor as described
in Sec. 7.1.2) are summarized in Table 11.3. The concept of “left” and “right” sides of a curve is introduced
in Sec. 3.2.4 of the user’s guide. Any of the argument forms can instead be applied to just the sth segment
of the curve, by giving it as {s,. . .}, e.g., {1,0.5} for half-way along the first segment. Negative values of
s count back from the last segment.

Attached labels. Attached labels (as described in Sec. 8.2) are available for the Left, Center, Right,
Tail, and Head anchor positions. The positioning parameters, as summarized in Table 11.3, may be
specified through the XLabelPosition options.

11.2 FigPolygon
Description. A FigPolygon may be used to draw a closed curve or, equivalently, a polygon. It is
therefore a generalization of the Mathematica Polygon primative (see ref/Polygon). The object consists
of an outline and fill (either or both of which may be shown or hidden, as selected using the usual options
of Sec. 8). Hence, the polygon may be filled or open.

Arguments. The points are determined by the argument curve (see Table 11.1), which may be specified
in any of the ways described in Sec. 7.2.

General options. The appearance is controlled through the usual options of Sec. 8, in particular, the
general options (Table 8.1), outline options (Table 8.2), and fill options (Table 8.3). The interpretation
of the curve is controlled by the options described in Sec. 7.2 (Table 7.7). FigPolygon also accepts
VertexColors, FillTexture, and VertexTextureCoordinates options, which define color
gradient fills and textured fills, with exactly the same meanings as they have for the Mathematica Polygon
primative (see ref/VertexColors, etc.).

Anchors. The anchors which can be generated from a FigPolygon object are the same as for
FigLine, as described in as summarized in Table 11.3. (For purposes of generating anchors, the curve
is completed as a closed curve, i.e., if the argument curve is given as the points {p1,p2,. . .,pn}, then the
full closed curve is {p1,p2,. . .,pn,p1}.)

Attached labels. Attached labels are available for the Left, Center, and Right anchor positions.
These represent labels on the perimeter curve of the polygon, as defined for FigLine in Table 11.3. The
only difference between the left, center, and right labels is the text offset (whether the text will fall inside, on,
or outside the perimeter). They should not be mistaken for labels at the left, center, and right of the polygon
per se, considered as a planar area, which would in fact be hard to define in general. The positioning
parameters, as summarized in Table 11.3, may be specified through the XLabelPosition options.

11.3 FigArrow
Description. A FigArrow is used to draw any of a variety of arrow types. Depending on the arrow
type, a FigArrow can consist of both an outline and a fill. In its simplest form, FigArrow produces a
curve with an arrowhead at the end — this is identical to what can already be drawn with FigLine. How-
ever, SciDraw also provides “block” arrows, double-shafted arrows, and “squiggle” arrows, as described
below. Furthermore, FigArrow is designed to be extensible by more advanced users (i.e., with a some pro-
gramming effort), in the sense that more exotic arrow shapes and fills can be defined through customization
functions.

Arguments. FigArrow[curve] (Table 12.1) takes a curve as its argument. This curve may be specified
in any of the ways described in Sec. 7.2.

94

General options. The appearance is controlled through the usual options of Sec. 8, in particular, the
general options (Table 8.1), outline options (Table 8.2), and fill options (Table 8.3). The interpretation of the
curve is controlled by the options summarized in Table 7.7.

Table 11.4 Options for arrow geometry.
Option Default
ArrowType "Line" Arrow type (outline and fill geometry).

Width 5 Arrow shaft width, in printer’s points.
ArrowJoinForm "Miter" Join style (mitering or beveling) to be used for block

(or other wide) arrows with multiple segments.

ShowTail False Whether or not to draw arrowhead at tail.
TailLength 6 Length of arrowhead at tail, in printer’s points.
TailLip 3 Extension of arrowhead beyond shaft, on each side,

at tail, in printer’s points.
ShowHead True Whether or not to draw arrowhead at head.
HeadLength 6 Length of arrowhead at head, in printer’s points.
HeadLip 3 Extension of arrowhead beyond shaft, on each side,

at head, in printer’s points.

TailFlush False When no arrowhead is drawn at tail, whether or not
shaft end should be flush to the endpoint anchor ori-
entation.

HeadFlush False When no arrowhead is drawn at head, whether or
not shaft end should be flush to the endpoint anchor
orientation.

ArrowType. The type, or shape, of the arrow is specified by the option ArrowType. This option
chooses the general nature of the outline and fill geometry. The possible values are "Line" for a simple
line shaft and arrowhead, "Block" for a solid block shape, "DoubleLine" for a double shafted arrow
(optionally with fill between the shafts), or "Squiggle" for a sinusoidal arrow as traditionally used to
schematically represent a photon. (Other arrow types may be defined, with some programming effort, as
described under DefineArrowType below.)

Width. The Width option defines the width of the arrow shaft, in printer’s points. This option is irrele-
vant for the Line arrow type. (The width refers to the distance between the lines on the left and right sides
of the arrow shaft and is not to be confused with the thickness of the line, which is still controlled by the
option LineThickness.)

ArrowJoinForm. Since the arrow shaft may now have finite width (for the "Block" or
"DoubleLine" arrow types), and arrows may also consist of more than one segment (if three or more
points are given for curve), the choice arises as to whether to miter or bevel the joints between segments.
This choice affects the “exterior” angle at each joint. With the default ArrowJoinForm->"Miter", a
sharp point is drawn. This is usually the natural choice but may lead to problems for hairpin joints (reflex
angles near 360◦), where the tip on the joint will have to extend outward by many times the usual shaft
width. Instead, with ArrowJoinForm->"Bevel", the joint will be truncated to the width of the arrow
shaft.

Arrowhead options. The next several options in Table 11.4 (ShowTail, etc.) simply generalize the
FigLine arrowhead options of Table 11.2, with slightly modified meanings for wide arrows. Note that

95

the default for ShowHead is now True, naturally enough for an object which is meant to represent an
arrow. Also, now that the arrow shaft can have a nonzero width, as for the Block arrow type, HeadLip
(or TailLip) really does represent a “lip” or extension past the width of the shaft, rather than simply the
half-width of the arrowhead.

TailFlush & HeadFlush. When an arrow is drawn from one object to another, it may be desirable
for the tail of the arrow to be drawn flush against the object (i.e., tangent to the object’s boundary). This is
requested with TailFlush->True. For instance, it is commonly expected that the tail of a “transition”
arrow in a level energy diagram will be flush against the starting level (i.e., horizontal) even when the
arrow shaft itself does not run vertically (see also the discussion of these options for Trans in Sec. 14.5).
Information on the tangent direction is available to FigArrow if the starting point p1 given to FigArrow
is an anchor, rather than simply a point. Some (but not all) of the predefined anchors which can be generated
from objects store the polar angle of the tangent to the object as the anchor orientation angle. If necessary
FigAnchor (Sec. 7.1.2) may be used to modify the orientation angle in the anchor given to FigArrow.
The option TailFlush only applies if ShowTail->False, that is, if the tail is drawn as a bare shaft end,
with no arrowhead. A similar option HeadFlush is provided for the head of the arrow and only applies if
ShowHead->False (this might be relevant if the FigArrow is used simply to draw a connecting shaft
between two objects, with no actual arrowhead on either end).

Table 11.5 Options controlling the appearance of squiggle arrows.
Option Default
SquiggleWavelength 10 Wavelength of sinusoid, in printer’s points.
SquiggleSide Right Side of arrow on which first crest of sinusoid should

occur.
SquiggleBuffer 2 Minimum length of straight segment of shaft (in ad-

dition to the arrowhead, if any) before sinusoid be-
gins, in printer’s points.

PlotPoints 32 Number of plotting points, per wavelength, to use in
rendering sinusoid.

Squiggle arrow options. Further options for fine-tuning the appearance of sinusoidal "Squiggle"
arrows are listed in Table 11.5. The wavelength of a "Squiggle" arrow is controlled with the option
SquiggleWavelength. The sinusoidal part of a squiggle arrow always contains an integer number of
“humps” or half wavelengths. A short length of straight arrow shaft appears at either end of the sinusoid,
making up the extra length needed for the arrow, before any arrowhead. The minimum length of these
segments is controlled by the option SquiggleBuffer.

Anchors. The anchors for FigArrow are as defined for FigLine in Table 11.3. However, now the
Left, Center, and Right anchors really are distinct. Not only are the text offsets different for these
anchors, as in Table 11.3, but, now that the shaft may have finite width, the Left anchor lies on the left
edge of the shaft, the Center anchor on the centerline of the shaft, and the Right anchor on the right edge
of the shaft.

Attached labels. Attached labels are available for the Left, Center, Right, Tail, and Head anchor
positions.

Table 11.6 Function for defining new arrow types.
DefineArrowType[name, f unction] Defines a new arrow type.

96

DefineArrowType. DefineArrowType[name, f unction] defines name to represent a new ar-
row shape, for use with the option ArrowType. The name should typically either be a string or else a
brace-delimited list consisting of a string plus one or more parameter patterns (the concept is illustrated
for DefineDataSymbolShape in Sec. 15.1.3). The f unction should be a pure function which accepts
several arguments, including a list of canvas points for the curve, head and tail anchors, and the arrow width,
and is responsible for generating the graphics for the arrow. This framework for defining new arrow types is
primarily meant for relatively experienced Mathematica programmers and requires some work with the tech-
nical “internals” of SciDraw (in contrast to the data plot customization framework discussed in Sec. 15.1.3,
which requires relatively little programming experience or effort). Examples may be found in the SciDraw
source code file FigArrow.nb.

11.4 FigRectangle and FigCircle
Description. The FigRectangle and FigCircle objects have many features in common, and are
therefore discussed together in this section.2 A FigRectangle may be used to draw a square or, more
generally, a rectangle. Similarly, a FigCircle may be used to draw a circle or, more generally, an ellipse.
A FigCircle may alternatively be used to draw a circular arc or sector, covering a specified range of
angles, in which case arrowheads can also be drawn at either end of the arc.

Note that FigRectangle is a generalization of the Mathematica Rectangle primative (see
ref/Rectangle), and FigCircle is a generalization of the Mathematica Circle and Disk primatives
(see ref/Circle and ref/Disk).

Either of these objects consists of an outline and fill (either or both of which may be shown or hidden,
as selected using the usual options of Sec. 8). Hence, the shape may be filled or open. Also, either of these
shapes may be rotated.

Arguments. The geometry for a FigRectangle may be specified in a few different ways (see Ta-
ble 11.1). For consistency with the usual Mathematica Rectangle primative, a rectangle may be specified
by giving two diametrically opposite corner points, as FigRectangle[p1,p2]. (Each of these points
may be specified in any of the ways described in Sec. 7.1.) However, giving the corner points is rarely the
most convenient approach from the user’s point of view. If the FigRectangle is being used to draw a box
around a region {{x1,x2},{y1,y2}}, then the form FigRectangle[region] is most appropriate. (The
region may, more generally, be specified in any of the ways described in Sec. 7.4.)

However, the most basic way of specifying the geometry of either a FigRectangle or a FigCircle
is the same — give its center point and its size. The form FigRectangle[p] or FigCircle[p] is used
to give the center point p. (The point p may be specified in any of the ways described in Sec. 7.1.) Then
the Radius option is used to give the dimensions. Actually, this mechanism is very flexible (e.g., the point
p can be at any relative position over the face of the shape, not just the center), as discussed below under
Rectangle or circle geometry.

General options. The appearance is controlled through the usual options of Sec. 8, in particular, the
general options (Table 8.1), outline options (Table 8.2), and fill options (Table 8.3).

2After describing rectangles in a section on circles, we will then attempt the feat of fitting a square peg into a round
hole. Or perhaps squaring the circle.

97

Table 11.7 Options for controlling the geometry of FigRectangle and FigCircle.
Option Default
Radius 1 Half-width (and half-height) of a square/rectangle,

or radius (or semi-axis lengths) of a circle/ellipse,
specified as detailed in Table 11.8

AnchorOffset Center Relative position of anchor point on shape.
PivotOffset Automatic Relative position of pivot point on shape.
Rotate None Rotation angle around pivot point.

Table 11.8 Ways of specifying the “radii” for a FigRectangle and FigCircle.
r or {rx,ry} Radius (or horizontal and vertical radii) in the cur-

rent panel’s coordinate system.
Scaled[r] or Scaled[{rx,ry}] Radius (or horizontal and vertical radii) as a fraction

of the size of the panel.
Canvas[r] or Canvas[{rx,ry}] Radius (or horizontal and vertical radii) in printer’s

points, i.e., as measured on the canvas.
Horizontal[r] or Horizontal[{rx,ry}] Radius (or horizontal and vertical radii) given in the

scale set by the x axis.
Vertical[r] or Vertical[{rx,ry}] Radius (or horizontal and vertical radii) given in the

scale set by the y axis.

Rectangle or circle/ellipse geometry. The options for controlling the geometry of a FigRectangle
or FigCircle are summarized in Table 11.7.

If the form FigRectangle[p] or FigCircle[p] is used, p is by default taken to be the center of
the shape. However, p may represent any point on the shape, as determined by the option AnchorOffset.
The value of the option AnchorOffset should be the relative position of the point on the face of the
shape and may be specified in any of the ways described in Sec. 7.3, for instance, Bottom for the bottom
edge of the rectangle or circle. For an ellipse, the relative coordinate is with respect to a rectangle which
circumscribes the ellipse — for instance, BottomLeft would be the bottom left corner of this rectangle.

The width and height of the shape are then specified through the Radius option, which can take on
values of the various forms summarized in Table 11.8. To understand the basic idea, let us focus on the
basic forms r and {rx,ry}. The name Radius, of course, comes from the case of a circle, but the basic
idea is equally applicable to either a rectangle or an ellipse.3 For a FigCircle, a radius Radius->1,
for instance, gives a circle of radius 1, while Radius->{2,1} gives an ellipse of semi-major axis 2 (hori-
zontally) and semi-minor axis 1 (vertically). Analogously, for a FigRectangle, a “radius” Radius->1
gives a square of half-width 1 (i.e., 2× 2), while Radius->{2,1} gives a rectange of half-width 2 and
half-height 1 (i.e., 4×2).

More generally, the first three forms for the Radius option in Table 11.8 are analogous to the three
ways of specifying a point (Table 7.1). The two “new” forms, Horizontal[. . .] and Vertical[. . .],
address the aspect ratio issues illustrated in Sec. 4.1.

For any of the forms of FigRectangle or FigCircle given in Table 11.1 — let us take a rectangle
for illustration, but the same comments apply to an ellipse — the rectangle’s position and dimensions are
initially given assuming the rectangle is aligned with the coordinate axes. From this starting point, the
rectangle may then be rotated. The rotation angle is specified through the option Rotate. This angle is in
radians, measured counterclockwise from horizontal, as usual for plane polar coordinates. The default value

3The syntax follows that of the radius argument to the Mathematica Circle or Disk primative.

98

is None, equivalent to 0. If the particular form FigRectangle[p] is used, and if p is actually an anchor
containing orientation information, rather than merely a point, the special value Rotate->Automatic
means that the rotation angle should be taken from the orientation angle of the anchor p. This possibility
is very convenient if the rectangle’s position is “anchored” to another object and if it is also desired that
the rectangle should also be rotated to align with that object. The rotation need not be around the center
of the rectangle but rather may be around any arbitrarily-chosen pivot point, say, one of the corners of the
rectangle, as determined by the option PivotOffset. The value of the option PivotOffset should
be the relative position of the pivot point on the face of the rectangle and may be specified as described in
Sec. 7.3. The default value PivotOffset->Automatic means that the value is taken from the option
AnchorOffset, i.e., rotation is about the same point p as was used to position the rectangle.

Table 11.9 Option for controlling the rendering of the corners of a FigRectangle.
Option Default
RoundingRadius None Radius of the circle to use in rendering rounded cor-

ners.

RoundingRadius (FigRectangle only). The corners of a FigRectangle may be rounded,
as specified with the RoundingRadius option (Table 11.9). For the general concept of a rounding ra-
dius, see ref/RoundingRadius. The radius may either be a single number r, or the horizontal and vertical
directions may be treated asymmetrically as {rx,ry}. SciDraw allows the option RoundingRadius to be
specified in any of the ways described above for the option Radius of Table 11.7. The default value None
means no rounding, equivalent to a radius of 0.

Table 11.10 Options for controlling the rendering of a segment or arc (FigCircle only).
Option Default
AngleRange None Angle range {θ1,θ2} for segment or arc, in radians,

or {p1,p2} to subtend rays to given points, or None
for full circle/ellipse

InvertAngleRange False Choose complementary subcircle
CurveClosed False Whether the outline of a partial circle {θ1,θ2}

should be drawn open (as an arc) or closed (as a
sector).

Angle range selection (FigCircle only). Options controlling the drawing of a segment or
arc are summarized in Table 11.10. A circular arc subtending the angles [θ1,θ2] is selected with
AngleRange->{θ1,θ2}. Sometimes it is more convenient to specify instead that the arc should sub-
tend the rays −−→pp1 and −−→pp2, with AngleRange->{p1,p2}, especially if the arc is being used to label the
angle between those rays. Here, the points p1 and p2 may be specified in any of the ways described in
Sec. 7.1 — in particular, they may be anchors.

99

Normal
range

80, π<

H
e
a
d

T
a
il Normal

range

8π, 0<

H
e
a
d

T
a
il Normal

range

8−π, 0<

H
e
a
d

T
a
il Normal

range

80, −π<

H
e
a
d

T
a
il

Inverted
range

80, π<

H
e
a
d

T
a
il Inverted

range

8π, 0<

H
e
a
d

T
a
il Inverted

range

8−π, 0<

H
e
a
d

T
a
il Inverted

range

80, −π<

H
e
a
d

T
a
il

The meaning of the arc angles θ1 and θ2 is a bit tricky in Mathematica (and not fully documented4).
The arc connecting two angles is initially ambiguous — you can imagine going around the circle from
θ1 to θ2 the “counterclockwise” way or the “clockwise” way (or, from a different perspective, the “short”
way or the “long” way). Mathematica apparently resolves this ambiguity (and SciDraw therefore follows
suit) by first sorting the two angles in increasing numerical order and then going counterclockwise from the
numerically-smaller angle to the numerically-large angle. Thus, e.g., either {0,Pi} or {Pi,0} generates
the upper half circle, while either {0,-Pi} or {-Pi,0} generates the lower half circle. The order of the
angles as arguments does not affect the arc drawn. On the other hand, the order of the angles as arguments
does have meaning to SciDraw, when it comes to drawing arrowheads or choosing a tangent direction (e.g.,
when anchoring text labels to the arc) — SciDraw thinks of the arc as a directed curve from θ1 (the tail) to
θ2 (the head).

Notice that the choice of subcircle for the arc — in the above example, whether the arc was drawn
around the lower half circle or the upper half circle — is generally inverted by adding 2π to the nu-
merically smaller angle. As a matter of convenience, FigCircle will do this for you, if you specify
InvertAngleRange->True.

CurveClosed (FigCircle only). In the case of an sector or arc, the question arises as to how the
outline should be drawn. With CurveClosed->False (the default), the outline is drawn as an arc, run-
ning along the circumference of the circle but not closing along the radii.5 With CurveClosed->True,
the outline is drawn around the whole a sector (or pie slice), running along the circumference of the circle
and closing along the radii.6

Arrowhead options (FigCircle only). Simple arrowheads can be drawn at either end of a circu-
lar/elliptical arc, controlled through the usual arrowhead options summarized in Table 11.2.

4See ref/Circle and ref/Disk.
5This is the behavior of the Mathematica Circle primative, when it is given angle arguments {θ1,θ2}.
6This is the behavior of the Mathematica Disk primative, when it is given angle arguments {θ1,θ2}.

100

Table 11.11 Named anchors for FigRectangle objects.
Name Argument
Center — Position: At the center of the shape.

Text offset: Centered — {0,0}.
Orientation: Horizontal.

Left yr (optional) Position: On the left edge of the rectangle, at relative position yr,
from -1 to +1, or at the midpoint if yr is omitted.
Text offset: Outside the rectangle — {+1,0}.
Orientation: Horizontal.

Right yr (optional) Similarly, on the right edge of the rectangle.
Bottom xr (optional) Similarly, on the bottom edge of the rectangle.
Top xr (optional) Similarly, on the top edge of the rectangle.

Offset {xr,yr} Position: At a relative position {xr,yr} on the face of the rectangle,
which may more generally be specified as described in Sec. 7.3.
Text offset: Centered — {0,0}.
Orientation: Horizontal.

101

Table 11.12 Named anchors for FigCircle objects.
Name Argument
Center — Position: At the center of the circle/ellipse.

Text offset: Centered — {0,0}.
Orientation: Horizontal.

Left — Position: At the left side of the circle/ellipse.
Text offset: Outside the circle — {+1,0}.
Orientation: Horizontal.

Right — Similarly, at the right side of the circle/ellipse.
Bottom — Similarly, at the bottom of the circle/ellipse.
Top — Similarly, at the top of the circle/ellipse.

Tail — Position: At the tail point θ1 of the circular arc.
Text offset: Past the end of the circular arc — {+1,0}.
Orientation: Tangent to circular arc (in the −θ sense).

Head — Position: At the head point θ2 of the circular arc.
Text offset: Past the end of the circular arc — {-1,0}.
Orientation: Tangent to circular arc (in the −θ sense).

Offset {xr,yr} Position: At a relative position {xr,yr} on the face of the cir-
cle/ellipse, which may more generally be specified as described in
Sec. 7.3.
Text offset: Centered — {0,0}.
Orientation: Horizontal.

Tangent u or
{"Angle",θ}
(optional)

Position: A fractional distance u (from 0 to 1) along the circumfer-
ence or circular arc, or at polar angle theta, or at the midpoint if not
specified.
Text offset: Outside the circle — {0,-1} for a clockwise arc, or
{0,+1} for a clockwise arc.
Orientation: Tangent to circumference or circular arc (in the −θ

sense).
Normal (similarly) Similarly, but with orientation along the outward normal of the circle

or ellipse (this is equivalent to the +r direction for a true circle, but it
is more generally defined as the true normal to the curve on the can-
vas, orthogonal to the tangent direction). The text is still outside the
circle, but this is now obtained with offset {-1,0} for a clockwise
arc, or {+1,0} for a clockwise arc..

HeadRadius
TailRadius

u (optional) Position: On the bounding radial line segments delimiting the sec-
tor/arc, at fractional distance u.
Text offset: Chosen to put the labels outside the sector, if the an-
gles are given such that the arc runs in the counterclockwise sense
from tail to head — {-1,0} for HeadRadius or {+1,0} for
TailRadius.
Orientation: Outward along the radius.

Anchors. The anchors which can be generated from a FigRectangle are summarized in Table 11.11.
Those which can be generated for a FigCircle are summarized in Table 11.12. [UNDER CONSTRUC-
TION: The Tangent and Normal anchors are subject to change and may be replaced by a common

102

“arc” anchor, with different text orientation options.]

Attached labels. For a FigRectangle, attached labels are available for the Left, Right, Bottom,
Top, and Center anchor positions.

For a FigCircle, attached labels are furthermore available for the Tangent, Normal, Head, Tail,
HeadRadius and TailRadius anchor positions. For a FigCircle, it is worth keeping in mind that:
(1) the Left, Right, Bottom, and Top are based on the circumscribed rectangle, for the full circle or
ellipse, even if only an arc or sector is actually drawn, so they may not fall where you might naively expect
them to in this case, (2) the HeadRadius and TailRadius labels label the bounding radii (sides) of a
sector, and (3) the Tangent and Normal labels are both for positioning labels on the arc, but differ in the
default orientation (and offset) for the text.

The positioning parameters, as summarized in Table 11.11, may be specified through the
XLabelPosition options.

11.5 FigPoint
Description. A FigPointmay be used to draw a simple geometric point. It is therefore a generalization
of the Mathematica Point primative (see ref/Point). FigPoint is essentially redundant to FigCircle,
since a point looks identical to a filled circle of the same radius. However, it is provided for consistency
with Mathematica’s full set of graphics primatives.

Arguments. The geometry is specified by giving the center and diameter of the point (see Table 11.1).
In FigPoint[p], p determines the location of the center, and the diameter is given through the option
PointSize (Table 8.4). (The point p may be specified in any of the ways described in Sec. 7.1.)

General options. The appearance is controlled through the usual options of Sec. 8, in particular, the
general options (Table 8.1) and point options (Table 8.4).

Anchors. The anchors which can be generated from a FigPoint are the same as those for a
FigCircle, as summarized in Table 11.12.

Attached labels. Attached labels are available for the Left, Right, Bottom, Top, and Center
anchor positions. The positioning parameters, as summarized in Table 11.12, may be specified through the
XLabelPosition options.

11.6 Splines
Description. A FigBSpline is used to draw a spline curve with control points {p1,p2,. . .,pn}. It
is therefore a generalization of the Mathematica BSplineCurve primative (see ref/BSplineCurve).7 The
object consists of an outline only. Arrowheads can be drawn at either end of the curve. The syntax of
FigBSpline is identical to that of FigLine (Sec. 11.1). Only the rendering of the curve is different,
namely, as a spline with given control points, instead of a simple set of line segments connecting those
points.

Arguments. The points {p1,p2,. . .,pn} are determined by the argument curve (see Table 11.1), which
may be specified in any of the ways described in Sec. 7.2.

7SciDraw also defines a FigBezier object, as a generalization of the Mathematica BezierCurve primative
(see ref/BezierCurve). However, its functionality is presently limited to simple (i.e., noncompound) Bezier curves of
cubic order. Therefore, it is not listed in Table 11.1. This is due to an undocumented limitation of the Mathematica
BezierFunction function (as of Mathematica 8), which might be rectified in future releases of Mathematica.

103

General options. The appearance is controlled through the usual options of Sec. 8, in particular, the
general options (Table 8.1) and outline options (Table 8.2). The interpretation of the curve is controlled by
the options summarized in Table 7.7.

Arrowhead options. Simple arrowheads can be drawn at either end of the curve, controlled through the
options summarized in Table 11.2.

Spline control options. The spline characteristics are determined by the options SplineClosed,
SplineDegree, SplineKnots, and SplineWeights, with exactly the same meanings as they have
for the Mathematica BSplineCurve primative (see ref/SplineClosed, etc., as well as the general discus-
sions in ref/BSplineCurve and ref/BSplineFunction).

Anchors. The anchors which can be generated from a FigBSpline are the same as those for a
FigLine, as summarized in Table 11.3. However, the parameter u is no longer guaranteed to be strictly
proportional to the arc length along the curve.

Attached labels. Attached labels are available for the Left, Center, Right, Tail, and Head an-
chor positions. The positioning parameters, as summarized in Table 11.3, may be specified through the
XLabelPosition options.

104

12 Annotations

Table 12.1 Additional figure objects, meant primarily for annotation of a figure.
FigLabel[p,text]
FigLabel[ob ject,name,text]
FigLabel[ob ject,name,arg,text]
FigLabel[text]

Generates a label.

FigRule[direction,coord,range]
FigRule[direction,coord,All]

Generates a horizontal or vertical rule line.

FigBracket[side,coord,range] Generates a bracket.

12.1 FigLabel
Description. A FigLabel is used to place a label at a specified point or anchor location. It is therefore
a generalization of the Mathematica Text primative (see ref/Text). The object consists of text (possibly
with a background and frame) only.

Arguments. In the usual form FigLabel[p,text] (Table 12.1), the given point — or an-
chor — p “anchors” the text, and the position of the label relative to this anchor is given
through the usual options TextOffset, etc., of Table 8.8. (The point p may be speci-
fied in any of the ways described in Sec. 7.1.) The form FigLabel[ob ject,name,text]
or FigLabel[ob ject,name,arg,text] attaches the label to a previously-drawn ob-
ject, and is essentially a shorthand for FigLabel[FigAnchor[ob ject,name],text] or
FigLabel[FigAnchor[ob ject,name,arg],text]. The optional argument to the anchor may al-
ternatively be given through the option Position (see below). The shortest form, FigLabel[text],
instead allows p to be given through the option Point.

General options. The appearance is controlled through the usual options of Sec. 8, in particular, the text
and background/frame options (Tables 8.5–8.8).

Table 12.2 Options for controlling the position a FigLabel.
Option Default
Point {0,0} Point or anchor specification.
Position Automatic Additional positioning argument to use when gen-

erating the label anchor.
Displacement None Shift of the label relative to its given position.

Point. If the form FigLabel[text] is used, the position of the label must be given through the option
Point, shown in Table 12.2. This is particularly useful in that is allows the label position to be determined
by the settings in a style (Sec. 9). For instance, suppose the label meant to serve as a plot title, and its style
is selected with Style->style. Then setting the option Point->Scaled[0.5,1] for FigLabel in
this style would position the plot label at the center top of the panel. This choice could later be changed
uniformly — in one fell swoop for all plots making use of style — simply by changing the value of the
option Point in style.

105

Position. In the form FigLabel[ob ject,name,text], the option Position->arg may be used
as an alternative way to specify an argument for the anchor, in the sense of Sec. 7.1.2, and yields the same
result as FigLabel[ob ject,name,arg,text]. The option Position therefore serves the same purpose
as XLabelPosition does for attached labels (Table 8.10) and is provided for consistency with that
option. Position->Automatic (the default) gives no argument for the anchor.

Displacement. The option Displacement (Table 12.2) specifies a displacement by which the
label should be shifted, relative to its given position. The displacement may be given in any of the forms
described for the arguments to RelativeTo in Sec. 7.1.3.

Anchors. The anchors which can be generated from a FigLabel object are identical to those for a
FigRectangle, as summarized in Table 11.11.

Attached labels. Not applicable.

12.2 FigRule
Description. A FigRule is used to draw a horizontal or vertical rule.

Arguments. In FigRule[direction,coord,range] (Table 12.1), the direction — Horizontal or
Vertical— determines the overall orientation of the rule. The coord specifies the coordinate at which the
rule should be placed (this as an x coordinate for a vertical rule, or a y coordinate value for a horizontal rule).
Note that this coordinate may be given in any of the various ways described for “individual coordinates”
in Sec. 7.1.1, e.g., as Scaled[xs] or by giving an anchor from which the horizontal position should be
taken. The range specifies the coordinate range the rule should cover (this is a y coordinate range for a
vertical rule, or an x coordinate range for a horizontal rule). For the common special case of drawing a rule
which extends across the entire width or height of the panel, the range may be given as All. Instead of a
range, a rectangular region may be given, in any of the various ways described in Sec. 7.4 — this is mainly
meant for use in conjunction with BoundingRegion, the idea here being that you can draw a rule which
runs the width or height of an object (or group of objects) by using the bounding region as an arguement to
FigRule.

General options. The appearance is controlled through the usual options of Sec. 8, in particular, the
general options (Table 8.1) and outline options (Table 8.2).

Arrowhead options. Simple arrowheads can be drawn at either end of the curve, controlled through the
options summarized in Table 11.2.

Anchors. The anchors which can be generated from a FigRule are the same as for a FigLine, as
summarized in Table 11.3. For determining the tail and head, if the entries in range have been given in
increasing order, then a horizontal bracket runs from left to right, and a vertical bracket from bottom to top.

Attached labels. Attached labels are available for the Left, Center, Right, Tail, and Head anchor
positions, as for a FigLine.

12.3 FigBracket
Description. A FigBracket is used to draw a horizontal or vertical bracket.

Arguments. In FigBracket[side,coord,range] (Table 12.1), the side — Bottom, Left, Top, or
Right — determines the overall orientation (horizontal or vertical) and configuration (where the labels
are drawn relative to the bracket and which way the end caps face). The coord specifies the coordinate at
which the bracket should be placed (this as an x coordinate for a vertical rule, or a y coordinate value for a

106

horizontal rule). Note that this coordinate may be given in any of the various ways described for “individual
coordinates” in Sec. 7.1.1, e.g., as Scaled[xs] or by giving an anchor from which the horizontal position
should be taken. The range specifies the coordinate range the bracket should cover (this is a y coordinate
range for a vertical rule, or an x coordinate range for a horizontal rule). Instead of a range, a rectangular
region may be given, in any of the various ways described in Sec. 7.4 — this is mainly meant for use in
conjunction with BoundingRegion, the idea here being that you can draw a bracket which runs the width
or height of an object (or group of objects) by using the bounding region as an arguement to FigBracket.

Table 12.3 Options for endcaps on FigBracket.
Option Default
ShowEnd True Whether or not to draw end caps.
EndLength 0 Length of endcap, in printer’s points, i.e., how far

it protrudes past the end (this is the negative of the
usual sense for HeadLength).

EndLip {3,0} Width of endcap, in printer’s points. Lengths
{in,out} are in the inward and outward directions,
respectively.

ShowTail, TailLength, . . .,
ShowHead, HeadLength, . . .

Automatic As in Table 11.2, but take values from “endcap” op-
tions if left as Automatic.

Endcap options. The options controlling the endcaps on a FigBracket, summarized in Table 12.3,
are similar in spirit to the arrowhead options for FigLine (Table 11.2).

Table 12.4 Options for FigureBracket, controlling the bracket label.
Option Default
BracketLabel None Label to display along bracket.
ShowBracketLabel Exterior Whether or not to show the label.
BracketLabelPosition Automatic Position of the label along the bracket.

BracketTextColor,. . .,
BracketFontFamily,. . .,
BracketTextBackground,. . .

Default As defined in Tables 8.5–8.7.

Bracket label options. The bracket label options, summarized in Table 12.4, have the form of the usual
options for an attached label (Table 8.10).

Anchors. The anchors which may be generated from a FigBracket object include all the anchors —
Left, Right, Head, Tail, etc. — defined for FigLine (Sec. 11.1), as summarized in Table 11.3. For
completeness, we note that a "Bracket" anchor is also defined. This anchor is meant primarily for internal
use in positioning the bracket label, which is constructed as the corresponding attached label.

Attached labels. The principal attached label meant for use with a FigBracket is the bracket label,
described above. However, attached labels are also available for the Left, Center, Right, Tail, and
Head anchor positions, for consistency with FigLine.

107

13 Graphics inclusion

Table 13.1 Inclusion of externally-generated graphics in a SciDraw figure.
FigGraphics[graphics] Incorporates Mathematica graphics into a figure,

aligned with the current panel’s coordinate system.

FigInset[graphics]
FigInset[graphics,region]

Renders Mathematica graphics much as is would
be displayed by Show, scaled so that it covers the
given region.

13.1 FigGraphics
Description. FigGraphics incorporates two-dimensional Mathematica graphics into the current
panel, so that points in the graphics lie at their correct positions in the current panel’s coordinate system.
FigGraphics is only appropriate for certain graphics, such as plotting output, which are defined in terms
of (x,y) coordinates, so that they can meaningfully be aligned with the x and y scales of the panel.

Arguments. In FigGraphics[graphics], the argument graphics may be of type Graphics,
ContourGraphics, or DensityGraphics.

Options. FigGraphics accepts the options Show and Layer, with their usual meanings from
Sec. 8.1.

13.2 FigInset
Description. FigInset renders Mathematica graphics (either two-dimensional or three-dimensional)
and raster images1 as they would normally be displayed by Mathematica — either directly as output from a
plotting function or as displayed with Show (see ref/Show) — and scales the result to fill the current panel,
or a given region of the panel (hence the name “inset”). For instance, the displayed graphics in the figure
will even include Mathematica-generated axes (in two or three dimensions) or frames if the original output
would have included these. FigInset is generally not appropriate if you are expecting mathematical
coordinates in a plot to align with the coordinate axes on the panel or coordinates of other objects drawn in
the panel (that is what FigGraphics is for). FigInset is appropriate if the graphics are simply being
considered as a “picture” which needs to fill a given area. Thus, FigInset is meant primarily for use
with images, three-dimensional plots, and certain specialized Mathematica two-dimensional graphics which
contain geometric shapes but do not naturally align with coordinate axes.

Arguments. In FigInset[graphics] or FigInset[graphics,region], the argument graphics may
be of type Graphics, ContourGraphics, DensityGraphics, Image, or Graphics3D. The
graphics will appear as they would be displayed by Show (see ref/Show). You may wish to apply Show
directly to the argument to change its appearance, before passing the argument to FigInset. For instance,
you can remove three-dimensional axes from a three-dimensional plot:

Example3D=ParametricPlot3D[. . .];
. . .
FigInset[

1Mathematica graphics fall into three main categories: two-dimensional graphics built from primatives
(see ref/Graphics), raster images (see ref/Image), and three-dimensional graphics built from primatives (see
ref/Graphics3D). All of these are accomodated by FigInset.

108

Show[Example3D,Axes->None,Boxed->False]
];

The region is specified as described in Sec. 7.4. If no region is given, this argument is taken as All, i.e.,
the full region covered by the current panel.

Options. FigGraphics accepts the options Show and Layer, with their usual meanings from
Sec. 8.1. The region covered by FigInset may also be adjusted using RegionExtension
and RegionDisplacement options, which have form and meaning as discussed in the context of
AdjustRegion (Sec. 7.4).

Anchors. The anchors which may be generated from a FigInset object are the same as for a
FigRectangle, summarized in Table 11.11. The anchors are defined with respect to the rectangular
region (given as the region argument) in which the graphics are inscribed.

109

14 Level schemes

Table 14.1 Figure objects for level schemes.
Lev[x1,x2,E] Generates a level.

ExtensionLine[level,side,dx] Generates an extension line to a level.

Connector[level1,level2] Generates a connector line between levels.

BandLabel[level,text] Generates a “band” label beneath the given level.

Trans[level1,level2]
Trans[level1,pos1,level2,pos2]

Generates a transition arrow between levels.

14.1 Lev
Description. A Lev is used to draw a horizontal line representing an energy level.1 The object consists
of an outline only.

Arguments. In Lev[x1,x2,E] (see Table 14.1), the arguments x1 and x2 give the nominal horizontal
endpoints of the level, and the energy coordinate E gives the nominal vertical coordinate. The actual hor-
izontal endpoints are indented by an amount determined by the option Margin, and the actual vertical
position can be shifted by an amount determined by the option VerticalShift, e.g., to prevent the lines
for two closely-spaced levels from overlapping each other (both options are discussed below). The argu-
ment E may be given as a string, provided that string represents an expression which, when evaluated by
Mathematica, yields a number. In this case, the string will be used verbatim for any energy labels attached
to the level (see Automatic energy labels below).

General options. The appearance is controlled through the usual options of Sec. 8, in particular, the
general options (Table 8.1) and outline options (Table 8.2).

Table 14.2 Options for controlling the geometry of Lev.
Option Default
Margin 0.1 Horizontal indent for each side of level.
VerticalShift None Vertical shift to apply to level, in printer’s points.
WingHeight 0 Height of wing, for each side of level, in printer’s

points.
WingTipWidth 40 Width of wing tip, for each side of level, in printer’s

points.
WingSlopeWidth 10 Width of wing sloped segment, for each side of

level, in printer’s points.
MakeWing True Whether or not to make wing, on each side of level.

Margin. The Margin option gives the horizontal indent for the sides of a level relative to the nominal
endpoints x1 and x2. Thus, for Margin->d, the true endpoints are x1 +d and x2−d. Different values may
be specified for the left and right sides, by giving these values as a list, as Margin->{d1,d2}.

1An overview of the concepts involved in drawing a level scheme is presented in Sec. 4.5 of the user’s guide.

110

VerticalShift. The VerticalShift option gives a vertical shift to apply to level, in printer’s
points.

WingHeight, WingTipWidth, WingSlopeWidth & MakeWing. These options control the
wing dimensions. A wing is only drawn if WingHeight is nonzero and MakeWing is True. For all these
options, different values may be specified for the left and right sides, by giving these values as a list, e.g.,
MakeWing->{False,True} indicates that a wing is only to be drawn on the right hand side of the level.

Table 14.3 Named anchors for Lev objects.
Name Argument
Left — Position: At the left endpoint of the level.

Text offset: To left of line — {+1,0}.
Orientation: Horizontal — likewise for all anchors below.

Right — Position: At the right endpoint of the level.
Text offset: To right of line — {-1,0}.

Bottom — Position: At the midpoint of the level.
Text offset: Beneath line — {0,+1}.

Top — Position: At the midpoint of the level.
Text offset: Above line — {0,-1}.

Center — Position: At the midpoint of the level.
Text offset: Centered on line — {0,0}.

Level x′ Position: At height of the central part of level, and horizontal posi-
tion x′ relative to the nominal left endpoint x1.
Text offset: Centered on line — {0,0}.

{Left,x′}
or {Right,x′}

Similarly, but at the height of the left or right endpoint of level, which
may be different from the height of central part of level, if there are
wings.

Anchors. The anchors which can be generated from a Lev object are summarized in Table 14.3.

Attached labels. Attached labels (as described in Sec. 8.2) are available for the Left, Right, Bottom,
Top, and Center anchor positions.

Table 14.4 Options for automatic energy label generation for Lev.
Option Default
DecimalDigits Automatic Decimal digits for fixed-point formatting of energy

labels.
EnergyLabelFunction Automatic Custom function to generate energy label.

Automatic energy labels. If the value of any of the attached labels is set to Automatic, the text of
that label will be a formatted representation of the level energy. Formatting is controlled by the options
summarized in Table 14.4 and is accomplished as follows: (1) If E was given as a string, e.g., "100.0",
that string is used. (2) If EnergyLabelFunction is a function (any value other than Automatic is
presumed to represent a function name or lambda function), this function will be applied to the numerical
value of the energy. (3) For EnergyLabelFunction->Automatic, the function FixedPointForm
(see the CustomTicks documentation) will be used to format the number according to the number of
decimal digits given by DecimalDigits. (4) However, with DecimalDigits->Automatic, the

111

default value, the number will be formatted as it would normally be displayed by Mathematica (which, for
floating point numbers, may cause trailing zeros to be omitted after the decimal point).

Table 14.5 Functions related to level objects.
LastLevel[] Returns a reference to the most recent Lev object.
LevelEnergyLabel[level] Returns the formatted energy label generated for use

with a given Lev object.

Level object functions. Two functions which return information on levels are summarized in Table 14.5.
LastLevel[] returns a reference to the most recently constructed level. It may be used anywhere a level
name is accepted as an argument. LevelEnergyLabel[level] returns the formatted energy label text
which was constructed for a given level (regardless of whether or not it was actually used in an attached
label at the time the level was constructed). For instance, this expression may be used in a FigLabel or to
label an arrow to the level.

14.2 ExtensionLine
Description. An ExtensionLine is used to draw a horizontal extension to an energy level drawn with
Lev. The object consists of an outline only.

Arguments. ExtensionLine[level,side,dx] (Table 14.1) draws an extension line of length dx on
side side (Left or Right) of the level level.

General options. The appearance is controlled through the usual options of Sec. 8, in particular, the
general options (Table 8.1) and outline options (Table 8.2).

Table 14.6 Option for controlling the geometry of ExtensionLine.
Option Default
ToWing True Whether or not to draw the extension at the height

of the wing, if any.

ToWing. With ToWing->True, which is the default, the extension line will attach to the endpoint of
the wing, if there is one on the given side (Table 14.6). However, with ToWing->False, the extension
line will be drawn at the same height as the central part of the level.

Anchors. The anchors which can be generated from an ExtensionLine object are Left and Right
anchors, similar to those noted for Lev in Table 14.3.

Attached labels. Attached labels (as described in Sec. 8.2) are available for the Left and Right anchor
positions.

14.3 Connector
Description. A Connector is used to draw a connecting line (from left to right) between two levels
drawn with Lev. The object consists of an outline only.

Arguments. In Connector[level1,level2] (see Table 14.1), the arguments are the names of the levels
to be connected. The line will extend from the right endpoint level1 to the left endpoing of level2.

112

General options. The appearance is controlled through the usual options of Sec. 8, in particular, the
general options (Table 8.1) and outline options (Table 8.2).

Table 14.7 Named anchors for Connector objects.
Name Argument
Bottom u (optional) Position: A fraction u, from 0 to 1, along the line, or at the midpoint

if u is omitted.
Text offset: Beneath the line — {0,+1}.
Orientation: Sloped along the line.

Top u (optional) Similarly, but with text offset {0,-1}, i.e., above the line.
Center u (optional) Similarly, but with text offset {0,0}, i.e., centered on the line.

Anchors. The anchors which can be generated from a Connector are summarized in Table 14.7.

Attached labels. Attached labels (as described in Sec. 8.2) are available for the Bottom, Top, and
Center anchor positions.

14.4 BandLabel
Description. A BandLabel is a special label meant to label a “band” of levels, in the spectro-
scopic sense. Note that BandLabel is essentially a shorthand for a special form of FigLabel, in that
BandLabel[level,text,VerticalShift->v] is a more concise way to obtain the same result as one
could also obtain with FigLabel[level,Bottom,text,Displacement->Canvas[{0,v}]].

Arguments. The label BandLabel[level,text] (Table 14.1) is drawn at the Bottom anchor of the
given level, shifted by a vertical distance given by the option VerticalShift.

General options. The appearance is controlled through the usual options of Sec. 8, in particular, the text
and background/frame options (Tables 8.5–8.8).

Table 14.8 Option for controlling the position a BandLabel.
Option Default
VerticalShift -3 Vertical displacement of label relative to level, in

printer’s points.

VerticalShift. Typically a band label would be drawn with a vertical space between it and the level
it is attached to, rather than directly flush with the bottom of the level. This distance is specified through the
option VerticalShift (Table 14.8).

Anchors. The anchors which can be generated from a FigLabel object are identical to those for a
FigRectangle, as summarized in Table 11.11.

Attached labels. Not applicable.

14.5 Trans
Description. A Trans is used to draw an arrow (representing a “transition”) from one level to another.
Its properties and use are essentially identical to those of a FigArrow (Sec. ??), except that the starting
and ending points for a Trans are determined from the positions of Lev objects rather than from a generic
curve argument.

113

Arguments. In the form Trans[level1,pos1,level2,pos2] (see Table 14.1), the arguments are the
names of the starting and ending levels, respectively, and the horizontal positions on these levels to be used
for the arrow endpoints. The positions are measured with respect to the nominal left endpoints of the levels,
ignoring any margins, i.e., pos1 is measured horizontally relative to the x1 argument of level1, and pos2
is measured horizontally relative to the x1 argument of level2. If one of these arguments pos1 or pos2 is
given as Automatic, the arrow will be drawn vertically, at the position determined by the other, explicitly
specified point. In the form Trans[level1,level2], the position arguments are instead taken from the
option EndPositions (described below).

Parent object. Trans inherits its option values from FigArrow, for which the options are described in
detail in Sec. 11.3.2 However, for Trans, the default values of TailFlush and HeadFlush are changed
to True.

General options. The appearance is controlled through the usual options of Sec. 8, in particular, the
general options (Table 8.1) and outline options (Table 8.2).

Table 14.9 Options for controlling the endpoints and intermediate points of a Trans.
Option Default
EndPositions 0.5 Horizontal positions of the arrow endpoints, relative

to the nominal left endpoints of the starting or end-
ing levels.

IntermediatePoints None Points through which the arrow should pass along
the way.

Transition arrow geometry. The options for controlling the endpoints and intermediate points of a
Trans are summarized in Table 14.9.

If the form Trans[level1,level2] is used, without the position arguments pos1 and pos2, then
their values are taken from the option EndPositions, which may either be given as a single value
EndPositions->pos or a list of two different positions EndPositions->{pos1,pos2} for the tail
and head. Either of the position arguments may be a number or Automatic, as described earlier.

Just as the curve determining a FigArrow may consist of more than two points, a Trans may have
“kinks”, i.e., it may run through additional intermediate points not on the line from the starting point to the
ending point. A list of intermediate points is provided through the option IntermediatePoints. These
may be specified in any of the forms allowed for points along a curve, as described in Sec. 7.2.1. In practice,
it may be particularly useful to use FromTail and FromHead specifications (Table 7.6).

Anchors. The anchors which can be generated from a Trans are identical to those for a FigLine or
FigArrow, summarized in Table 11.3. See also the discussion of anchors for FigArrow (Sec. 11.3).

Attached labels. Attached labels (as described in Sec. 8.2) are available for same anchor positions as for
FigArrow, namely, Tail, Head, Left, Center, and Right.

2That is, the default values for the options are initially defined as Inherited, and, if they are left as Inherited,
their values will be taken from the default values defined for FigArrow. For the general options of Sec. 8, these values
may in turn also be Inherited, in which case they are taken from the default values defined for FigObject.

114

14.6 Decay scheme generation

Table 14.10 Automatic decay scheme generation commands.
AutoLevelInit[x′,dx,Dx] Initializes the positioning parameters for decay

scheme generation.

AutoLevel[level1] Selects a new starting level for transitions.

AutoTrans[level2] Draws a transition to the designated ending level.

These commands automate aspects of the generation of beta decay schemes.
AutoLevelInit[x′,dx,Dx] initializes the parameters, for the first transition to be drawn at hor-
izontal coordinate x′ relative to the nominal left endpoint of the level (the pos argument of Trans), with
step dx between transitions from the same level and Dx between the last transition from one level and the
first transition from the next level. AutoLevel[level1] selects the starting level for subsequent transitions
drawn with AutoTrans. AutoTrans[level2] draws a transition to the designated ending level. Their
use is illustrated in Sec. 4.5 of the user’s guide.

115

15 Data plotting

Table 15.1 Figure objects for data plotting.
DataPlot[data] Generates a plot of the given data set data.
DataLegend[p,{{style1,text1},
{style2,text2},. . .}]

Generates a data legend, located at p, for the given
plot styles.

15.1 DataPlot
Description. DataPlot generates an (x,y) plot from a data set.1 We first consider the numerical
data set — the appropriate format for the data set and how its interpretation is controlled by options to
DataPlot — in Sec. 15.1.1. Then we consider the appearance of the plot — controlled through the op-
tions defined for different plot elements DataLine, DataSymbol, and DataFill and through styles —
in Sec. 15.1.2

Comment on object name. As usual for figure objects, a data plot may be given a name when it is
created, as DataPlot[[name]][data]. This name may be used to attach labels to the plot, connect arrows
to it, etc., exactly as for a FigLine object.

15.1.1 Data sets
Data set as an array. A DataPlot must be given a data set, by which we mean simply an array
of numbers, i.e., a list of lists. Each row contains the information for one data point, much as in a stan-
dard spreadsheet. An array (or, equivalently, a matrix) is represented in Mathematica as a list of lists.
An introduction is provided in tutorial/VectorsAndMatrices. Here we simply note that Mathematica pro-
vides many functions for manipulating such arrays, for instance, selecting subsets of the rows or columns
(see guide/HandlingArraysOfData). You can display the array in a more readable, tabular form using
TableForm (see ref/TableForm). In the simplest case, each row of a data set will contain only (x,y) in-
formation, and the set will therefore be represented as a list of lists of the form {{x1,y1}, {x2,y2}, . . .,
{xn,yn}}.

Generating the data set. The data in a data set can come from various sources. For small data sets, you
might simply enter the data manually into the Mathematica notebook, e.g., either directly as a list of lists

DataSet1={{1,4.3},{2,5.7},. . .};

This can be input equivalently but in a more spreadsheet-like format using the table input capability of
Mathematica’s notebook interface (see tutorial/EnteringTablesAndMatrices).

More powerful is the possibility of calculating arrays of data within Mathematica and then plotting
them. The Table command is particularly useful in this context (see tutorial/MakingTablesOfValues). As
a simple example, if f is some function you have defined, and you want to plot its values on the interval
[0,10] in steps of 0.25, you might define

DataSet2=Table[{x,f[x]},{x,0,10,0.25}];

Alternatively, you can input tabular data from external data files using Import (see tuto-
rial/ImportingAndExportingData). For example,

DataSet3=Import["c:/data/expt5/run001.dat"];

1An example-based introduction to data plotting is given in Sec. ?? of the user’s guide.

116

In more complex situations, you could write your own code to read in data using Mathematica’s lower-level
input functions, such as Read, ReadList, or BinaryRead.

SciDraw provides some tools to help manipulate data once they are in tabular form (Sec. 15.3).

Table 15.2 Options for DataPlot, for selecting data columns.
Option Default
DataColumns {1,2} The data set columns {cx,cy} which provide x and

y coordinate values of the data points.
XErrorColumn None The data set column cσx for x uncertainties, or

columns {c
σ
−
x
,cσ

+
x
} for downward and upward x

uncertainties.
YErrorColumn None The data set column cσy for y uncertainties, or

columns {c
σ
−
y
,cσ

+
y
} for downward and upward y

uncertainties.
SymbolOptionColumns None Data set columns providing control of the data sym-

bol appearance on a point-by-point basis.

Columns in the data set. In general, the array which stores a data set can have more than just two
columns. The x and y data need not be in columns 1 and 2, respectively. Indeed, different columns of the
same array can be used as x and y values in different data plots. Uncertainties (“error bars”) for the x and
y values can also be stored as columns in the array. DataPlot interprets these columns according to the
options listed in Table 15.2.

The default option values DataColumns->{1,2}, XErrorColumn->None, and
YErrorColumn->None suppose a data set with the simple data structure

x y
described above.

For an example of alternative column assignments, suppose we have nuclear mass M and quadrupole
moment Q data, with uncertainties σM and σQ, tabulated as functions of nuclear neutron number N and
proton number Z, with the columns arranged as

N Z M σM Q σQ

Then a plot of Q vs. Z, with error bars shown on Q, would be obtained by using the options
DataColumns->{2,5}, XErrorColumn->None (default), and YErrorColumn->6. A plot of
M vs. N, with error bars shown on M, would be obtained from the same table by using the options
DataColumns->{1,3}, XErrorColumn->None (default), and YErrorColumn->4.

Data may have distinct lower and upper uncertainties, most generally as (x+σ+
x

−σ
−
x
,y

+σ+
y

−σ
−
y
). The different

quantities in this expression may be stored in different columns, for instance, as
x σ−x σ+

x y σ−y σ+
y

Then, a plot including error bars would be obtained by using the options DataColumns->{1,4},
XErrorColumn->{2,3}, and YErrorColumn->{5,6}. Note that we adopt the convention that the
lower uncertainties should be tabulated as positive values.

Missing data and missing uncertainties. Missing x or y values in a data set can be indicated by
giving them value Missing[]. This follows the convention of many of Mathematica’s database and
plotting functions (see ref/Missing). If either the x or y value is missing for a data point, the data point
will be ignored. Likewise, the x or y uncertainties may also be given as Missing[], in which case the data
point will be plotted but the error bar will be omitted.

117

SymbolOptionColumns. Sometimes, it is necessary to override the default appearance properties
(shape, size, color, etc.) of the symbols representing one or more individual data points in a data set. Some-
times the appearance needs to be modified for just some subset of the data points, e.g., to highlight these
points, while the rest of the data points retain their default appearance. Alternatively, it may be necessary
to specify some aspect of the appearance individually for each data point, e.g., if the size of each data
point is meant to convey some quantitative information. The appearance of the data symbols is controlled
through options, described in detail below in Sec. 15.1.2. Here we simply note that the data symbol op-
tions SymbolShape, SymbolSize, Color, FillColor, LineColor, and LineThickness can
be overridden on a point-by-point basis. Values for the option are given in one of the columns of the data
set, selected by specifying SymbolOptionColumns->{option->column} as an option to DataPlot.
For instance, with SymbolOptionColumns->{SymbolSize->3,FillColor->4}, the third col-
umn of the data set will control the symbol sizes, and the fourth column will control the symbol colors. If
the value for any of the appearance properties is given as Default (or Missing[]) for some data point,
the default value will be used for that data point.

Table 15.3 Options for DataPlot, for selecting axis scale transformations.
Option Default
XAxisScale None The axis scale transformation to apply to the x axis

data.
YAxisScale None The axis scale transformation to apply to the y axis

data.

XAxisScale & YAxisScale. The XAxisScale and YAxisScale options control the axis
scales — linear (possibly rescaled), logarithmic, or otherwise. The possible values are None for ordi-
nary linear axes (default), {Scaled,m} for rescaling so that the values are plotted in units of the given
multiplier m (x→ x/m), {Linear,a,b} for an arbitrary linear rescaling x→ ax+b, Log for logarithmic
scaling to base 10, or more generally {Log,base} for logarithmic scaling to a given base. Alternatively,
other scalings can be defined through customization functions as described in Sec. 15.1.3.

118

15.1.2 Data plot appearance

Table 15.4 Options for DataPlot affecting the appearance of the data plots.
Option Default
Style None This is the usual Style->style option, as de-

fined in Table 8.1. However, we repeat it explic-
itly here, since this option takes on special impor-
tance for DataPlot, since styles are used to con-
trol the plot appearance, by storing sets of options
for DataLine, DataSymbol, and DataFill.

DataLine {} List of additional options to be applied to the data
curve DataLine, overriding those in the defaults
or set by style.

DataSymbol {} List of additional options to be applied to the data
symbol and error bars DataSymbol, overriding
those in the defaults or set by style.

DataFill {} List of additional options to be applied to the data
fill DataFill, overriding those in the defaults or
set by style.

Plot elements. The appearance of the data plot is controlled by three different sets of options, for the
three different posible elements of a data plot — the curve (DataLine), the symbol (DataSymbol),
which may also include error bars, and the fill beneath or above the curve (DataFill). By default, the
data plots generated by DataPlot include a curve and symbols but no fill, but this choice is controlled
through the options for these plot elements.

Controlling the plot style. Styles (Sec. 9) play an especially important role in plotting data with
DataPlot and subsequently generating corresponding legends with DataLegend. styles are used to
control the plot appearance, by storing sets of options for DataLine, DataSymbol, and DataFill.

To start with, we should observe that the data plot appearance can be set at three different levels of
generality, that is, affecting (1) all plots, (2) all plots of a given style, or (3) just an individual plot. To
elaborate:

(1) If DataPlot is simply invoked as DataPlot[data], with no options, then the appearance of the
data plot is controlled by the default values of the options for DataLine, DataSymbol, and DataFill,
considered in detail below (Tables 15.5–15.7). These may be set, as usual, with SetOptions.

(2) Different plot styles may be defined and named using DefineStyle (see Sec. 9.1). If a style is
to be used to control the style of a plot, it should define options for DataLine, DataSymbol, and/or
DataFill. This style is then invoked for a specific plot through the usual Style option. The general
scheme is thus

DefineStyle[plotstyle,{DataLine->{. . .},DataSymbol->{. . .},. . .}];
. . .
DataPlot[data,Style->plotstyle];

The same style that is used to control the appearance of the plot can then be used to generate a corresponding
entry in the legend generated with DataLegend.

(3) Options for DataLine, DataSymbol, and DataFill may be specified for just a single data
plot by giving lists of these options DataPlot — through options named, originally enough, DataLine,

119

DataSymbol, and DataFill — as summarized in Table 15.4. Options for DataLine, DataSymbol,
and DataFill given directly in this fashion take precedence over the default option values or, if a Style
option has been given, any option values obtained from that style. DataPlot in this case is invoked as

DataPlot[data,DataLine->{option->value,. . .},
DataSymbol->{option->value,. . .},. . .,Style->plotstyle];

This is a quick-and-dirty approach meant for adjusting the appearance of one-off plots, not for systematic
use with plots which should have similar styling across multiple figures or plots which are to be labeled in
legends. One should therefore develop the habit of using a style instead.

Table 15.5 Options for DataLine.
Option Default
CurveShape "Straight" Shape of the curve between data points.

Show,
Color,
LineThickness,
LineDashing, . . .

Inherited As in defined in Tables 8.1 and 8.2.

Curve appearance options. The appearance of the data curve is controlled by the options for
DataLine, summarized in Table 15.5. The graphical appearance of the line itself (color, thickness, etc.)
is controlled, as usual, through the basic figure object options described in Sec. 8. The relevant options are
the general options in Table 8.1 and outline options in Table 8.2. Display of the curve is disabled by setting
Show->False.

CurveShape. The shape of the curve is specified by the option CurveShape. The possible values are
"Straight" for straight line segments between data points (default), "Step" for rectangular steps, or
"Histogram" for rectangular steps separated by drop lines to the x-axis. (Alternatively, "SideStep"
and "SideHistogram" can be used for “sideways” plots, where x is the dependent variable. Then the
steps are vertical and the drop lines go horizontally to the y-axis.) Other curve shapes may be defined as
needed by the user, as described in Sec. 15.1.3.

Table 15.6 Options for DataSymbol.
Option Default
SymbolShape "Circle" Shape to be used for the data points.
SymbolSize 2.5 Size (diameter) to be used for the data points.

Show,
Color,
LineColor,
LineThickness,
LineDashing, . . .,
ShowFill,
FillColor, . . .

Inherited As in defined in Tables 8.1, 8.2, and 8.3.

SymbolShape. The SymbolShape option determines the shape of the data symbols. The
possible values are "Circle", "Square", "Diamond", "UpTriangle", "DownTriangle",
"LeftTriangle", "RightTriangle", {"Polygon",n} (for a regular n-gon), "Plus", and
"Cross". A value of None indicates that no shape should be drawn for the symbol, but note that this

120

still allows the error bars to appear (in contrast, Show->False or Color->None would hide the entire
symbol, including error bars). Others symbol shapes may be defined as needed by the user, as described in
Sec. 15.1.3.

Symbol appearance options. The appearance of the data symbol and error bars is controlled by the
options for DataSymbol, summarized in Table 15.6. Each symbol has both an outline (which includes
the error bars) and a fill. The graphical appearance of these (line color, line thickness, fill color, etc.) is
controlled, as usual, through the basic figure object options described in Sec. 8. The relevant options are
the general options in Table 8.1, the outline options in Table 8.2, and the fill options in Table 8.3. An
“open” symbol is obtained by setting either ShowFill->False or FillColor->None. Display of
the symbol and error bars is disabled entirely by setting Show->False. Please refer to the discussion
of SymbolOptionColumns in Sec. 15.1.1 to see how the appearance of each symbol can be controlled
separately.

SymbolSize. The SymbolSize option determines the size of the data symbols, in printer’s points.
This quantity is, roughly speaking, the full distance across the symbol — thus, e.g., for the circle, the
diameter, not the radius. This option also sets the widths of the caps for the error bars.

Table 15.7 Options for DataFill.
Option Default
Filling None Type of fill to add under (or around) curve.
Direction Vertical Fill direction.

Show,
Color, . . .

Inherited As in defined in Tables 8.1, 8.2, and 8.3.

Fill appearance options. The appearance of the data fill is controlled by the options for DataFill,
summarized in Table 15.7. The “fill” is actually a polygon, which can in general have both an outline and
a fill. The graphical appearance of these (line color, line thickness, fill color, etc.) is controlled, as usual,
through the basic figure object options described in Sec. 8. The relevant options are the general options in
Table 8.1, the outline options in Table 8.2, and the fill options in Table 8.3.

Two of the basic appearance options for DataFill do not have the usual default values indicated in
Sec. 8. Most commonly, it is not desirable for the fill beneath a data curve to have an outline, as this would
visually overlap with the data curve itself. Thus, the default value of the option ShowLine is False,
differing from the usual default value shown in Table 8.2. Also, it is usually not desirable for the fill to
partially or completely obstruct the axis or other previously-drawn data plots. Therefore, the default value
of the option Layer is 0, also differing from the usual default value shown in Table 8.9. This serves to
“push back” the fill, so that it is behind the data plots and any other objects drawn in the current panel.

Filling. The option Filling may have the values None for no fill (default), Axis for filling from
the curve to the axis, -Infinity or Infinity for filling below or above the curve, respectively. Alter-
natively, the name of another DataPlot object may given as the option value, in which case a fill is drawn
in the region between two plots. In particular, a data band can be drawn by drawing a fill between data plots
of the lower and upper boundary curves — which could themselves be made invisible, leaving just the band,
if desired, by setting Show->False for DataLine and for DataSymbol).

Direction. The Direction option may have the values Vertical for filling from the data curve
up or down to a given y value (default) or Horizontal for filling from the data curve sideways to a given
x value. This option is irrelevant for fills between two data plots.

121

Anchors for DataPlot. The anchors which can be generated from a DataPlot object are the same
as for a FigLine, which are summarized in Table 11.3 of Sec. 11.1. The anchor positions are defined
with reference to the “curve” which would pass through the data points, regardless of whether the curve
(DataLine) or just the symbols are visible in the plot. Note that the Left and Right anchor names
refer to the “left” and “right” sides of the curve, as introduced in Sec. 3.2.4, not necessarily the left and
right sides of the page. Indeed, for the common case in which we are plotting relatively “flat” data (slope
approximately zero) and specify the points in the usual order (increasing x coordinate) the “left” side of the
curve is actually the “top” of the plot.

Table 15.8 Special default values for options affecting the attached labels for DataPlot.
Option Default
HeadTextOrientation
TailTextOrientation

Horizontal
Horizontal

Note special default values, relative to Table 8.8.

Attached labels for DataPlot. Attached labels (as described in Sec. 8.2) are available for the Left,
Center, Right, Tail, Head, and Point anchor positions. The Head and Tail labels for DataPlot
are most commonly used to label the left or right endpoints, respectively, of a relatively horizontal curve — in
recognition of this situation, the default values for their XTextOrientation options have been changed
from the usual Automatic (which would align the labels with the tangent to the curve) to Horizontal,
as noted in Table 15.8.

15.1.3 Defining new axis scales, symbol shapes, and curve shapes

Table 15.9 Functions for defining new axis scales, symbol shapes, and curve shapes for data plots.
DefineAxisScale[name,function] Defines a new data axis scale function.
DefineDataSymbolShape[name,points] Defines a new data symbol shape.
DefineDataLineShape[name,function] Defines a new data curve shape.

Further possible values for some of the data plotting options may be defined using the customization func-
tions summarized in Table 15.9.

DefineAxisScale. DefineAxisScale[name,function] defines name to represent a new axis
scaling type, for use with the options XAxisScale and YAxisScale. The name should typically either
be a string or else a brace-delimited list consisting of a string plus one or more parameter patterns. (In place
of a string, it may also be appropriate to use the symbolic name of an existing Mathematica function, as
in Log.) The function should be a function of a single variable,2 which accepts the coordinate value as
its argument and returns the scaled value, or else -Infinity or +Infinity for out-of-range values.
For instance, the Log and {Log,base} axis scales described above in Sec. 15.1.1 are defined within the
SciDraw code by

LimitedLog[Base_,x_?Positive] = Log[Base,x];
LimitedLog[Base_,_?NonPositive] = -Infinity;
DefineAxisScale[Log, LimitedLog[10,#]&];
DefineAxisScale[{Log,Base_}, LimitedLog[Base,#]&];

2The function could either be the name of a function or be the function itself, as a “pure function” — basically,
anything which Mathematica can successfully apply to a single numerical argument and get back a return value. See
ref/Function for more on defining a pure function.

122

DefineDataSymbolShape. DefineDataSymbolShape[name,points] defines name to rep-
resent a new data symbol shape, for use with the option SymbolShape. The name should typically either
be a string or else a brace-delimited list consisting of a string plus one or more parameter patterns. The ar-
gument points should be an expression which evaluates to a list of points. These would describe the symbol
centered on the origin and contained in a box approximately covering the coordinate intervals [−1,+1] — in
which case the SymbolSize option will then reasonably represent a size in printer’s points. For instance,
the "Diamond" and {"Polygon",n} symbol shapes described above in Sec. 15.1.2 are defined within
the SciDraw code by

DefineDataSymbolShape[
"Diamond",
1.2*{{0.,1.},{-1.,0.},{0.,-1.},{1.,0.}}

];
DefineDataSymbolShape[
{"Polygon",n },
N[Table[
{Cos[2*Pi*i/n+Pi/2],Sin[2*Pi*i/n+Pi/2]},
{i,1,n}

]]
];

DefineDataLineShape. DefineDataLineShape[name,function] defines name to represent
a new data curve shape, for use with the option CurveShape. The name should typically either be a string
or else a brace-delimited list consisting of a string plus one or more parameter patterns, as illustrated above
for DefineDataSymbolShape. The function should be a pure function which accepts a list of (x,y)
data points (these will be in canvas coordinates) as its argument and returns a list of points for the curve.
Examples may be found in the SciDraw source code file FigData.nb.

15.2 DataLegend
Description. DataLegend generates a legend to identify one or more data plots.

Arguments. A DataLegend may simply be viewed as a special type of FigLabel — one in
which the label text is replaced by an array of legend entries. In DataLegend[p,{{style1,text1},
{style2,text2},. . .}] (Table 15.1), the point p determines where the legend should be positioned. By
default, it gives the position at which the top left corner of the legend should be anchored, but this
can be changed with the TextOffset option, as discussed further below. The list {{style1,text1},
{style2,text2},. . .} consists of a list of pairs of plot styles together with the text which should accompany
each one. The style is used to draw a sample line segment and data symbol. The special value None may be
given in place of stylei, in which case no line segment or symbol is drawn, but the text is still included (this
is useful for including, e.g., comment entries in the legend, or headers for different groups of data sets).

123

Table 15.10 Options for DataLegend.
Option Default
TextOffset TopLeft Note different default value relative to Table 8.8.

Width 20 The width, in printer’s points, of each line sample
entry.

InternalSeparation 2 The separation, in printer’s points, between the line
sample and text label within an entry.

EntrySpacing {10,2} The horizontal and vertical separation, in printer’s
points, between entries.

RowLimit None The maximum number of rows of entries.

Appearance and positioning options (including TextOffset). The appearance and positioning
options for DataLegend are exactly as for a FigLabel (Sec. 12.1). Positioning is controlled by giving a
point p for the position, and indicating through the option TextOffset option (Table 8.8) where exactly
this point should lie on the face of the rectangular legend. It is often more suitable to specify the position of
a legend by a corner, than by the center, if one edge is to be kept near and a fixed distance away from an edge
of the surrounding panel. (The center is not an appropriate anchoring point, since all sides of the legend
move outward unpredictably from the center as new entries are added or old entries are edited.) The default
value of the option TextOffset for DataLegend is therefore TopLeft (or {-1,+1}), differing from
the usual default value shown in Table 8.8. Note also that it is generally most convenient to use Scaled
coordinates for the point, so that the legend falls at a definite fractional position within the panel, and is not
affected by changes in the choice of axis scales.

DataLegend background and frame. The DataLegend can also be given a background and
frame, controlled through the options in Table 8.7.

Width. The Width option determines the horizontal length, in printer’s points, of the line sample. The
same width is reserved as blank space even if no line is actually visible and only a symbol is present.

InternalSeparation. The InternalSeparation option determines the separation, in
printer’s points, between the line sample part of each legend entry (left part) and its accompanying text
label (right part).

EntrySpacing. The EntrySpacing option determines the {horizontal,vertical} separation, in
printer’s points, between successive columns and rows, respectively, of entries in the legend.

RowLimit. The RowLimit option determines the maximum number of rows of entries in the legend.
If this number is exceeded, entries wrap to a new column.

124

15.3 Data manipulation utilities

Table 15.11 Data manipulation utility functions.
MakeDataSet[expr,data]
MakeDataSet[expr,{data1,data2,. . .}]

Creates a new data set through row-by-row opera-
tions.

AttachIndex[data]
AttachIndex[start,data]
AttachIndex[start,step,data]

Prepends a column, containing a running index, to
data.

SelectByColumn[data,c,patt] Selects those rows of data for which the value in
column c matches the pattern (or value) patt.

MakeDataSet The MakeDataSet function, summarized in Table 15.11, returns a
data set in which each row is obtained from corresponding row of either a single
data set, in the form MakeDataSet[expr,data], or multiple data sets, in the form
MakeDataSet[expr,{data1,data2,. . .}], by evaluating the given expression expr. All the data
sets given as arguments to MakeDataSet in the latter form must have the same number of rows as each
other. This expression should evaluate to a list, which becomes the rows of the new data set.

This expression may invoke various special expressions DataEntry[col],
DataEntry[{row,col}], DataEntry[set,col], or DataEntry[set,{row,col}] to refer to
entries in the various data sets (the present row if row is omitted, and the first set if set is omitted). This
expression may also invoke the symbol Row, which represents the row number, starting with 1. Thus, e.g.,
the expression DataEntry[set,col] represents the value in column col of the current row of the setth
data set in the argument list. If just a single data set is given to MakeDataSet, it makes more sense to use
the short form DataEntry[col], which represents the value in column col of the first (and, in this case,
only) data set in the argument list.

The column number col may be given as in the usual form for an argument to Part (see ref/Part).
A single positive integer simply represents the column number starting from 1 for the leftmost column. A
single negative integer represents a column number counting backwards from −1 for the rightmost column.
If the column is given as All, all the entries in the given row of the data set will be inserted at this point,
in place of the DataEntry. A subrange of entries from the row may be specified using the Mathematica
“span” notation for ranges of indices (see ref/Span), such as 2;;4 to insert the entries from the second
through fourth columns.

A range of rows may be selected, for use in constructing the new data set, by giving MakeDataSet the
option Range, which follows the same syntax as a range specification for the Mathematica function Take
(see ref/Take), e.g., Range->{2,-1} for all rows starting with the second.

Example: Suppose data set DataSet1 contains rows
x y1 y2

but for plotting we also wish to append a column containing the values y2
2. That is, we need a data set with

rows
x y1 y2 y2

2
To construct such a data set, we would build each row by taking all the entries from the given row of
DataSet1 and appending the square of the last entry. This is accomplished with

NewDataSet=MakeDataSet[
{DataEntry[All],DataEntry[3]ˆ2},
DataSet1

];

125

Example: Another typical example would be to take the “differences” of two data sets. For instance, one
data set might contain the “theoretical” value and the other the “experimental” value, and we might wish to
plot the difference between the two. Suppose data set DataSet1 contains rows

x y1
and DataSet2 contains rows

x y2
We are assuming that both data sets contain exactly the same number of rows and contain data for exactly
the same x values, in exactly the same order. To construct a data set DataSet3 with rows

x y1− y2
we would build each row by copying the first entry from the given row of DataSet1 (or, equivalently,
DataSet2) and appending the difference of the second entries of the two data sets. This accomplished
with

NewDataSet=DataOperation[
{DataEntry[1,1],DataEntry[1,2]-DataEntry[2,2]},
{DataSet1,DataSet2}

];

Example: For an example involving ranges of columns, suppose data set DataSet1 contains rows
x y1 z1

and DataSet2 contains rows
x y2 z2

To construct a data set DataSet3 with rows
x y1 z1 y2 z2

we would build each row by taking all the entries from the given row of DataSet1 and appending all the
entries from each row of DataSet2 except the first. This accomplished with

NewDataSet=DataOperation[
{DataEntry[1,All],DataEntry[2,2;;-1]},
{DataSet1,DataSet2}

];

Or, instead of DataEntry[2,2;;-1], for the “second through last” columns, we could equivalently use
DataEntry[2,2;;3], for the “second through third” columns, in this example.

AttachIndex The AttachIndex function, summarized in Table 15.11, takes data — which
may either be a proper data set (matrix) or simply a list of values (vector) — and prepends a column,
containing a running index. By default, for AttachIndex[data], the index starts from 1 and in-
creases in steps of 1, but alternate starts and steps may be specified as AttachIndex[start,data] or
AttachIndex[start,step,data].

SelectByColumn The SelectByColumn function, summarized in Table 15.11, is defined in the
same spirit as the Mathematica Cases function. SelectByColumn[data,c,patt] selects those rows of
data for which the value in column c matches the pattern (or value) patt.

126

A1 Known issues
Here are some problems which have been noted by or reported to the author:

Self-test error.. When using SciDraw, you may occasionally see a self-test error message pop up in the
Mathematica “Messages” window:

INTERNAL SELF-TEST ERROR: CAPopup—c—1519
Click here to find out if this problem is known, and to help improve
Mathematica by reporting it to Wolfram Research.

The problem apparently harmless and can be ignored. (Reported under: Mathematica 9.0.1)

These are the only ones of which the news has come to Notre Dame. There may be many others but they
haven’t been discovered.

127

A2 Licenses
Different parts of the SciDraw package are distributed under different licenses:

The code for SciDraw is distributed under the GNU Public License, Version 2. Here, the code refers
to the contents of the directory packages in the SciDraw distribution.

The documentation for SciDraw is distributed under the GNU Free Documentation License, Version
1.2. Here, the documentation refers to the contents of the directory doc in the SciDraw distribution.

The GNU Public License, Version 2
Preamble
The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software—
to make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source code.
And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so that any problems introduced by others
will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use
or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

Terms and Conditions For Copying, Distribution and Modification
0. This License applies to any program or other work which contains a notice placed by the copyright

holder saying it may be distributed under the terms of this General Public License. The “Program”,
below, refers to any such program or work, and a “work based on the Program” means either the
Program or any derivative work under copyright law: that is to say, a work containing the Pro-
gram or a portion of it, either verbatim or with modifications and/or translated into another language.

128

(Hereinafter, translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

(c) If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them
as separate works. But when you distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

129

(a) Accompany it with the complete corresponding machine-readable source code, which must
be distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third party, for
a charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms
of Sections 1 and 2 above on a medium customarily used for software interchange; or,

(c) Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with
Subsubsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of
the executable. However, as a special exception, the source code distributed need not include anything
that is normally distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution of
the source code, even though third parties are not compelled to copy the source along with the object
code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do so,
and all its terms and conditions for copying, distributing or modifying the Program or works based
on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automati-
cally receives a license from the original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further restrictions on the recipients’ exercise
of the rights granted herein. You are not responsible for enforcing compliance by third parties to this
License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not distribute the Program
at all. For example, if a patent license would not permit royalty-free redistribution of the Program by

130

all those who receive copies directly or indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system, which is implemented by public license practices. Many people
have made generous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and “any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

No Warranty
10. Because the program is licensed free of charge, there is no warranty for the program, to the extent

permitted by applicable law. Except when otherwise stated in writing the copyright holders and/or
other parties provide the program “as is” without warranty of any kind, either expressed or implied,
including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The entire risk as to the quality and performance of the program is with you. Should the
program prove defective, you assume the cost of all necessary servicing, repair or correction.

11. In no event unless required by applicable law or agreed to in writing will any copyright holder, or
any other party who may modify and/or redistribute the program as permitted above, be liable to you
for damages, including any general, special, incidental or consequential damages arising out of the
use or inability to use the program (including but not limited to loss of data or data being rendered
inaccurate or losses sustained by you or third parties or a failure of the program to operate with

131

any other programs), even if such holder or other party has been advised of the possibility of such
damages.

GNU Free Documentation License, Version 1.2, November 2002
Preamble
The purpose of this License is to make a manual, textbook, or other functional and useful document “free”
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

Applicability and definitions
This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
“Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclu-
sively with the relationship of the publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section does
not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document
may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are
none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some

132

widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification
by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text.
A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML, PostScript or PDF produced by some word processors for
output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, “Title Page” means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands
for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorse-
ments”, or “History”.) To “Preserve the Title” of such a section when you modify the Document means
that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

Verbatim Copying
You may copy and distribute the Document in any medium, either commercially or noncommercially, pro-
vided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

Copying in Quantity
If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

133

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download
using public-standard network protocols a complete Transparent copy of the Document, free of added ma-
terial. If you use the latter option, you must take reasonably prudent steps, when you begin distribution
of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the Document.

Modifications
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the Doc-
ument (all of its principal authors, if it has fewer than five), unless they release you from this require-
ment.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section Entitled “History” in the Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing the Modified Version as stated
in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the “History” section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

134

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and
preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of
your Modified Version by various parties–for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

Combining Documents
You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents,
forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

Collection of Documents
You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is included

135

in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License in
all other respects regarding verbatim copying of that document.

Aggregating with independent Works
A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from
the compilation is not used to limit the legal rights of the compilation’s users beyond what the individual
works permit. When the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in
electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

Translation
Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the require-
ment (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

Termination
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain in
full compliance.

Future Revisions of this License
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version

136

number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

Addendum: How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the document and put
the following copyright and license notices just after the title page:

Copyright c©YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with . . . Texts.”
line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST,
and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these exam-
ples in parallel under your choice of free software license, such as the GNU General Public License, to
permit their use in free software.

137

